期刊文献+

基于全局差错能量函数的立体匹配算法 被引量:4

Stereo Matching Algorithm Based on Global Error Energy Function
下载PDF
导出
摘要 针对全局立体匹配算法计算量大的问题,引入全局差错能量函数对算法进行改进。将全局差错能量函数作为立体匹配的匹配代价,同时进行跳跃式区域生长,隔点求取差错能量函数值以获取视差图,并采用均值滤波器对其做平滑处理,设置影响滤波阈值大小的容差系数,使之更适合人眼的观察。针对不同像素的彩色图像对,自适应选取容差系数得到较优的滤波后视差图。实验结果表明,改进算法在保证准确性的基础上可有效减小计算耗时,提高匹配实时性。 In order to solve the problem of large amounts of computation in the global stereo matching algorithm,this paper proposes an improved algorithm by introducing global error energy function. It considers global error energy function as the cost of stereo matching,carries out region growing by leaps and bounds and gets the disparity map by jumping to obtain error energy function. The disparity map is smoothed by using average filter and the tolerance coefficient which will affect the size of filtering threshold is set,making it more suitable for human eyes. The tolerance coefficient is selected adaptively for different color and pixel stereo image pairs to get optimal filtered disparity map.Experimental results showthat,on the basis of maintaining the accuracy,the improved algorithm can reduce computing time and improve real-time performance of matching.
出处 《计算机工程》 CAS CSCD 北大核心 2017年第7期244-249,共6页 Computer Engineering
基金 国家自然科学基金(61202027) 北京市属高等学校创新团队建设与教师职业发展计划项目(IDHT20150507)
关键词 立体匹配 差错能量 匹配代价 区域生长 容差系数 阈值 视差图 stereo matching error energy matching cost region growing tolerance coefficient threshold disparity map
  • 相关文献

参考文献7

二级参考文献93

  • 1刘小芳,曾黄麟,吕炳朝.点密度函数加权模糊C-均值算法的聚类分析[J].计算机工程与应用,2004,40(24):64-65. 被引量:28
  • 2隋婧,金伟其.双目立体视觉技术的实现及其进展[J].电子技术应用,2004,30(10):4-6. 被引量:87
  • 3修宇,王士同,吴锡生,胡德文.方向相似性聚类方法DSCM[J].计算机研究与发展,2006,43(8):1425-1431. 被引量:21
  • 4赵杰,于舒春,蔡鹤皋.金字塔双层动态规划立体匹配算法[J].控制与决策,2007,22(1):69-72. 被引量:9
  • 5Tao H, Sawhney H S, Kumar R. A global matching framework for stereo computation [ C ]//Proceedings International Conference on Computer Vision. Vancouver, Canada: IEEE, 2001 : 532-539.
  • 6Klaus A, Sormann M, Karner K. Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure [ C ]//Proceedings of the 18th International Conference on Pattern Recognition. Hong Kong, China : IEEE, 2006 : 15-18.
  • 7Wang Zengfu, Zheng Zhigang. A region based stereo matching algorithm using cooperative optimization [ C ]//Proceedings of the 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Alaska, USA: IEEE, 2008: 1-8.
  • 8Yang Q, Wang L, Yang R. Stereo matching with color-weighted correlation, hierarchical belief propagation and occlusion handling [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31 (3) :492-504.
  • 9Gong M L, Yang R, Wang L, et al. A performance study on different cost aggregation approaches used in real-time stereo matching [ J]. International Journal of Computer Vision, 2007, 75(2) : 283-296.
  • 10Comaniciu D, Meer P. Mean Shift: A robust approach toward feature space analysis [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24 (5) : 603-619.

共引文献35

同被引文献18

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部