期刊文献+

基于单线激光雷达与视觉融合的负障碍检测算法 被引量:17

Negative Obstacle Detection Algorithm Based on Single Line Laser Radar and Vision Fusion
下载PDF
导出
摘要 近年来,无人车成为热门研究方向,而负障碍物检测是地面无人车环境感知与理解的任务之一。为此,提出一种基于单线激光雷达和单目视觉的负障碍检测算法。为弥补单线激光雷达在覆盖能力方面的不足,对检测到的负障碍区域在摄像机画面中进行跟踪,结合跟踪结果对负障碍区域做进一步判别。实验结果表明,该算法在多种实验场景下拥有96%以上的负障碍检测准确率,可有效应用于微小型地面无人车辆。 In recent years,the unmanned vehicle has become a hot research direction,and negative obstacle detection is one of the tasks in environmental perception and understanding for unmanned ground vehicles. Therefore a negative obstacle detection algorithm based on single line laser radar and monocular vision is proposed. To compensate for the lack of coverage of single line laser radar,it is necessary to track the detected negative obstacle area in the camera screen,and then the negative obstacle area is further determined according to the tracking results. The experimental results showthat the algorithm has more than 96% negative obstacle detection accuracy in a variety of experimental scenarios. It can be applied to mini unmanned ground vehicles effectively.
出处 《计算机工程》 CAS CSCD 北大核心 2017年第7期303-308,共6页 Computer Engineering
基金 国家自然科学基金(61272220) 江苏省自然科学基金(BK20140794)
关键词 无人车 单线激光雷达 环境感知 负障碍检测 目标跟踪 unmanned vehicle single line laser radar environmental perception negative obstacle detection target tracking
  • 相关文献

参考文献5

二级参考文献53

  • 1刘大学,戴斌,李政,贺汉根.一种单线激光雷达和可见光摄像机的标定方法[J].华中科技大学学报(自然科学版),2008,36(S1):68-71. 被引量:15
  • 2李颖宏,熊昌镇,尹怡欣,刘亚利.一种基于边缘高斯混合模型的运动目标检测方法[J].系统仿真学报,2009,21(S1):72-74. 被引量:6
  • 3马颂德 张正友.计算机视觉[M].北京:科学出版社,1998.72-80.
  • 4Bradski G R.Computer Video Face Tracking for use in a Perceptual User Interface[EB/OL].http://developer.intel.com/technology/itj/ q21998/pdf/camshift.pdf.
  • 5Boyle M.The Effects of Capture Conditions on the CAMSHIFT Face Tracker[R].Alberta,Canada:Department of Computer Science,University of Calgary,2001.
  • 6Liu Nianjun,Lovell,Brian C.MMX-Accelerated Real-Time Hand Tracking System[C].Dunedin,New Zealand:Proceedings IVCNZ,2001.381-385.
  • 7Intel Open Source Computer Vision Library Reference Manual[EB/OL].www.intel.com/research/mrl/research/opencv.
  • 8ZHANG Zheng-you. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330-1334.
  • 9Maim H, Heyden A. Extensions of plane-based calibration to the case of translational motion in a robot vision setting[J]. IEEE Transactions on Robotics, 2006, 22(2): 322-333.
  • 10FENG Chun, WU Hong-tao, QIAO Bing. Combining camera calibration with hand-eye calibration and using in monocular vision[C]//IEEE International Conference on Computer, Mecbatronies, Control and Electronic Engineering. Piscataway, NJ, USA, 2010: 21-24.

共引文献82

同被引文献224

引证文献17

二级引证文献121

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部