期刊文献+

基于蓝牙Mesh-SVM算法的室内定位系统 被引量:1

Wireless Positioning Systems Based on Intelligent Devices of Bluetooth Mesh
下载PDF
导出
摘要 随着低功耗蓝牙的更新换代(BLFA.2),蓝牙技术在智能家居、智能设备开发中日显突出。本文针对蓝牙信号多径、易衰弱、穿透能力低等缺陷,采用支持向量机(SVM)神经网络算法来实现系统的室内定位,通过RBF径相基函数为核函数(高斯核)可控的将低维线性不可分数据映射到高维模型中,计算超平面并完成数据分类;基于空间的不可瞬变性,采用反馈滤波对验证结果进行筛选,实现精确定位。实验结果中表明算法定位精度达到1m,与传统算法相比有效的提高了效率与精度。 With low power consumption bluetooth upgrades(BLE4.2),bluetooth technology,which in the field of smart home and intelligent device development is becoming increasingly prominent.This article directing at the bluetooth signal multipath and weak low penetration defects,try to use support vector machine(SVM) algorithm of neural network to realize the indoor system positioning,through RBF diameter basis function as the kernel function(gaussian kernel) controllable to make lower dimensional linear inseparable data mapped to high-dimensional model,calculate hyperplane and finish data classification;Based on the instantaneous degeneration of the space,the feedback filter is adopted to verify the results and realize accurate positioning.The results of the experiment show that the precision of the algorithm achieve to locate 1 m,which effectively improve the effectiveness and efficiency compared with the traditional algorithm.
出处 《无线通信技术》 2017年第1期24-27,共4页 Wireless Communication Technology
基金 国家自然科学基金项目(61571251) 浙江省公益技术应用研究项目(2015C34004) 宁波市自然科学基金(2015A610116)
关键词 低功耗蓝牙 SVM RBF核函数 反馈滤波 RSSI 室内定位 BLE SVM RBF-kernel funtion feedback filter RSSI indoor location
  • 相关文献

参考文献6

二级参考文献55

  • 1张金龙,余玲玲,刘京南.精密检测与定位技术的研究[J].仪器仪表学报,2004,25(6):754-756. 被引量:5
  • 2张金龙,余玲玲,刘京南.Ultra-precision positioning control technique based on neural network[J].Journal of Southeast University(English Edition),2006,22(1):130-133. 被引量:4
  • 3张金龙,刘京南,钱俊波,王海春.超精密角位移测量与控制技术研究[J].仪器仪表学报,2006,27(12):1738-1741. 被引量:16
  • 4张翔,肖小玲,徐光祐.一种确定高斯核模型参数的新方法[J].计算机工程,2007,33(12):52-53. 被引量:12
  • 5Hu Mingqing,Chen Yiqiang,Kwok J T Y.Building sparse multiplekemel SVM classifiers[J].IEEE Transactions on Neural Networks, 2009,20(5) : 827-839.
  • 6Chapelle O, Vapnik V.Choosing multiple parameters for support vector machines[J].Machine Learning, 2002,46( 1 ) : 131-159.
  • 7Ratsch G, Onoda R G, Muller T K.Soft margins for AdaBoost[J]. Machine Learning,2001,42(3) :287-320.
  • 8Zhang Daoqiang,Chen Songcan,Zhou Zhihua.Learning the kernel parameters in kernel minimum distance classifier[J].Pattern Recognition, 2006,39( 1 ) :133-135.
  • 9Vapnik V N.The nature of statistical learning theory[M].New York: Springer, 1996.
  • 10SCHOLKOPF B, PLATT J, SHAWE-TAYLOR J, et al.. Estimating the support of high-dimen- sional distribution [J]. Neural Computation, 2001, 13 : 1443-1471.

共引文献107

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部