期刊文献+

压缩真空注入超灵敏干涉型量子激光雷达 被引量:7

Super-sensitivity interferometric quantum lidar with squeezedvacuum injection
下载PDF
导出
摘要 干涉型激光雷达是通过相位干涉检测实现高精度目标距离探测的设备,传统干涉型激光雷达相位探测灵敏度受到标准量子极限的限制,从而限制了测距精度。为了进一步打破极限,提高精度,提出了基于压缩真空态注入的相位超灵敏度干涉型量子激光雷达方案,可以使相位灵敏度突破标准量子极限,并分别推导了Z探测法、强度差探测法和奇偶探测法情况下的相位灵敏度,随后,进行仿真计算,并对性能的提升进行比较与分析。最后,在灵敏度最好的奇偶探测法的基础上,建立了存在传输损耗时的相位灵敏度模型,讨论了实现超灵敏度允许的最大传输损耗。 Interferometric lidar is a device to achieve high precision distance detection by phaseestimation. The phase sensitivity of the traditional interferometric lidar is limited by the standard quantumlimit, this affecting the precision of ranging. In order to further break the limit and improve the systemprecision, a scheme of super-sensitivity interferometric quantum lidar with squeezed-vacuum injection wasput forward, thus phase sensitivity breaking through the standard quantum limit. And the phase sensitivityof the system was derived with Z detection, intensity difference detection and parity detection method.Then, the ascension of performance was compared and analyzed by simulation calculation. Finally, on thebasis of best detection method-parity detection, a phase sensitivity model with transmission loss wasestablised, and the maximum transmission loss allowed by super-sensitivity was discussed.
出处 《红外与激光工程》 EI CSCD 北大核心 2017年第7期56-61,共6页 Infrared and Laser Engineering
基金 国家高技术研究发展计划(JZ20150174)
关键词 压缩真空态注入 超灵敏度 奇偶探测 传输损耗 squeezed-vacuum injection super-sensitivity parity detection transmission loss
  • 相关文献

参考文献2

二级参考文献37

  • 1Boto A N, Kok P, Abrams D S, et al. Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit[J]. Phys Rev Left, 2000, 85: 2733- 2736.
  • 2Didomenico L D, Lee H W, Kok P, et al. Quantum interferometric sensors[C]//SPIE, 2004, 5359:169-176.
  • 3Lanzagorta M. Quantum Radar[M/OL]. [2014-10-08]. http: www. morganclaypool.
  • 4Dutton Z, Shapiro J H, Guha S. LADAR resolution improvement using receivers enhanced with squeezed - vacuum injection and phase-sensitive amplification[J]. J Opt Soc Am B, 2010, 27: A63-A72.
  • 5Dowling J P. Quantum optical metrology--the lowdown on high-N00N states[J]. Contemp Phys, 2008, 49: 125-143.
  • 6Jiang K B, Lee H W, Gerry C C, et al. Super-resolving quantum radar: coherent -state sources with homodyne detection suffice to beat the diffraction limit[J]. J App Phys, 2013, 114: 193102.
  • 7Gao Y, Anisimov P M, Wildfeuer C F, et al. Surper- resolution at the shot-noise limit with coherent states and photon-number-resolving detectors [J]. J Opt Soc Am B, 2010, 27: A170-174.
  • 8Gerry C C, Mimih J. The parity operator in quantum optical metrology[J]. Contemporary Physics, 2010, 51(6): 497-511.
  • 9Anisimov P M, Raterman G M, Chiruvelli A, et al. Quantum metrology with two-mode squeezed vacuum: parity detection beats the Heisenberg limit[J]. Physical Review Letters, 2010, 104(10): 103602.
  • 10Kim T, Pfister O, Holland M J, et al. Influence of decorrelation on Heisenberg-limited intefferometry with quantum correlated photons[J]. Physical Review A, 1998, 57 (5): 4004.

共引文献25

同被引文献102

引证文献7

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部