期刊文献+

基于种群划分策略的人工蜂群算法的改进研究

Research on Improvement of the Artificial Bee Colony Algorithm Based on Population Partition Strategy
下载PDF
导出
摘要 针对人工蜂群算法在高峰多维情况下早熟性收敛和容易陷入局部寻优的问题,提出了基于种群划分策略的人工蜂群算法.此算法利用个体的适应值与子种群的适应值的相似度,将种群划分为同参不同源的子种群,一方面优化了子种群的数量,另一方面保证了种群量的多样性和解的精确度.最后,通过实验性计算,计算了新算法和常规人工蜂群算法的迭代次数,平均误差等参数,验证了新算法的高效低误差性. Aiming at the problem of premature convergence and easy to fall into local optimization in artificial bee colony algorithm in the case of peak and multidimensional,the artificial bee colony algorithm based on population partition strategy is proposed.In this algorithm,by using the individual fitness and the fitness of the sub population similarity,the population will be divided into different sub populations with the same parameters.On the one hand,the number of sub populations are optimized,on the other hand,the diversity of the population and the accuracy of reconciliation are ensured.Finally,through the experimental calculation,the parameters of the iteration number and average error etc.of the new algorithm and the conventional artificial bee colony algorithm are calculated,and the new algorithm is proved to be high efficient and low error.
作者 于珊珊
出处 《西安文理学院学报(自然科学版)》 2017年第4期55-58,73,共5页 Journal of Xi’an University(Natural Science Edition)
关键词 人工蜂群算法 改进算法 适应度值 平均误差 the artificial bee colony algorithm improved algorithm fitness value the average error
  • 相关文献

参考文献3

二级参考文献45

  • 1公茂果,焦李成,刘芳,杨杰.基于神经系统与免疫系统调节机理的Memetic计算[J].中国科学:信息科学,2010,40(11):1428-1436. 被引量:3
  • 2李德毅,刘常昱,杜鹢,韩旭.不确定性人工智能[J].软件学报,2004,15(11):1583-1594. 被引量:401
  • 3孟红记,郑鹏,梅国晖,谢植.基于混沌序列的粒子群优化算法[J].控制与决策,2006,21(3):263-266. 被引量:76
  • 4KARABOGA D. An idea based on honey bee swarm for numerical optimization, TR06 [ R]. Erciyes University, Engineering Faculty, Computer Engineering Department, 2005.
  • 5KARABOGA D, BASTURK B. A powerful and efficient algorithm for numerical function optimization: Artificial Bee Colony (ABC) algo- rithm[ J]. Journal of Global Optimization, 2007, 39(3) : 459 -471.
  • 6KARABOGA D, BASTURK B. On the performance of Artificial Bee Colony (ABC) algorithm[ J]. Applied Soft Computing, 2008, 8(1) : 687 - 697.
  • 7KARABOGA D, AKAY B. Artificial bee colony algorithm on train- ing artificial neural networks[ C]// Proceedings of the 15 th IEEE Signal Processing and Communications Applications Conference. Piseataway, NJ: IEEE Press, 2007:1-4.
  • 8KARABOGA D , AKAY B , OZTURK C . Artificial Bee Colony (ABC) optimization algorithm for training feed-forward neural net- works[ C]// Proceedings of Modeling Decisions for Artificial Intelli- gence Conference. Berlin: Springer-Verlag, 2007:318-319.
  • 9KARABOGA D. A new design method based on artificial bee colony algorithm for digital IIR filters[ J]. Journal of the Franklin Institute, 2009, 346(4) : 328 -348.
  • 10SINGH A. An artificial bee colony algorithm for the leaf-constrained minimum spanning tree problem [ J]. Applied Soft Computing, 2009, 9(2) : 625 -631.

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部