期刊文献+

氮气氧气在溶气水中的溶解过程研究 被引量:4

Study on the Dissolution Process of Oxygen and Nitrogen in Dissolved Water
下载PDF
导出
摘要 在气浮工艺中,不同气源对溶气水的溶解量及溶解过程都不相同.针对氮气、氧气两种气体在溶气水中溶解量的差异,首先探讨了氮气、氧气分子结构的差异对其溶解的影响;其次,介绍了气体在水中的两种溶解形式:间隙填充和水合作用.提出有效间隙度的概念,利用氧气和氮气各自的有效间隙度,以及氮气、氧气的水合常数,运用Matlab进行一系列拟合计算,得出氮气、氧气在不同温度下以两种形式溶解的量的变化规律.最后,分析了温度变化引起溶气水中间隙填充和水合作用量的变化的原因. In the air flotation process,the dissolution and dissolution process of dissolved gas are different in different gas sources.According to the difference of solubility of nitrogen and oxygen in water,the affect of the difference of molecule structures between nitrogen and oxygen on their solubility in water was discussed in this paper.Secondly,two kinds of gas dissolved in water are introduced,and they are gap filling and hydration.The concept of effective gap degree was proposed,and by using the effective gap degrees and hydration coefficient of nitrogen and oxygen,the change rules of the dissolved amount of oxygen and nitrogen by each type of dissolution at different temperature were obtained through a series of data fitting calculation by using Matlab.Finally,the reason for the change of the amount of gap filling and hydration in gas-soluble water caused by temperature change was also analyzed.
作者 韩健
出处 《西安文理学院学报(自然科学版)》 2017年第4期87-91,共5页 Journal of Xi’an University(Natural Science Edition)
关键词 溶解 间隙填充 水合作用 气浮 溶气水 dissolution gap filling hydration air floatation dissolved water
  • 相关文献

参考文献3

二级参考文献43

  • 1郝石生,张振英.天然气在地层水中的溶解度变化特征及地质意义[J].石油学报,1993,14(2):12-22. 被引量:120
  • 2胡春,裘俊红.天然气水合物的结构性质及应用[J].天然气化工—C1化学与化工,2000,25(4):48-52. 被引量:27
  • 3陈汉宗,周蒂.天然气水合物与全球变化研究[J].地球科学进展,1997,12(1):37-42. 被引量:28
  • 4Hammerschmidt E G. Formation of gas hydrates in natural gas transmission lines[J].Ind Eng Chem, 1934, 26(8):851.
  • 5Kawamura T, Komai T, Yamamoto Y, et al. Growth Kinetics of CO2 Hydrate just below Melting Point of Ice[J]. Journal of Crystal Growth, 2002, 234 (1): 220 -226.
  • 6Kevenvolden K A. Gas Hydrate--Geological Perspective and Global Change[J]. Rev Geophys, 1993,31:173-187.
  • 7Yamano M S, Uyeda Y Aoki, Shipley T H, Estimates of Heat Flow Derived from Gas Hydrates[J]. Geology,1982, 10:339--343.
  • 8Holder G D, Kamath V A, Golbole S P. The Potential of Natural Gas Hydrates as an Energy Resource [ J ]. Ann Rev Energy, 1984, 9:427--445.
  • 9Lashof D A, Ahuja R. Relative contributions of greenhouse gas emissions to global warming[J]. nature,1990, 344(5) : 529-531.
  • 10Willson R C, Bulot E, Cooney C L. Calthrate Hydrate Formation Enhances Near- Critical and Supercrltcal Extraction Equilibrium[J]. Chem Eng Commun, 1990,95:47-55.

共引文献164

同被引文献41

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部