摘要
为了综合利用流形学习、多任务学习和正则化约束的优势,提出一种基于全局和局部约束的半监督多任务特征选择(semi-supervised multi-task feature selection,SMFS)模型,在多个任务间共享学习的基础上,构建SMFS模型.该模型采用l2,1范数约束选择最具判别性的特征,避免噪声的干扰,并引入局部信息约束提高特征选择的准确度.将SMFS模型应用于网页自动分类,与目前流行的几种算法进行对比,证明了该算法的有效性.
Feature selection,which aims to reduce the dimension of the data and remove the redundant feature,plays an important role in improving the performance of multimedia processing.In this paper,a semi-supervised multi-task feature selection algorithm built on sharing information between multiple learning tasks has been proposed.In order to select the most discriminative features,and avoid the noise interference,we have also constructed a semi-supervised multi-task feature selection model with l2,1-norm and local information constraint.In order to verify the effectiveness of our algorithm,we apply the algorithm to the web page classification application and compare it with several state-of-the-art algorithms.Results show that the proposed algorithm is effective.
出处
《厦门大学学报(自然科学版)》
CAS
CSCD
北大核心
2017年第4期567-575,共9页
Journal of Xiamen University:Natural Science
基金
国家自然科学基金(61502405)
福建省自然科学基金(2016J01324
2017J01511)
关键词
特征选择
多任务学习
网页自动分类
l2
1范数
feature selection
multi-task learning
web page classification
l2,1-norm