摘要
如果一个有向图D包含一个生成欧拉子有向图,那么称D是超欧拉图.Alsatami等人定义了两个有向图的2-和,并且给了两个有向图的2-和是超欧拉图的充分条件.论文将2-和的概念推广到了l-路和,同时给出了一些两个有向图的l-路和是超欧拉图的充分条件.
A directed graph D is supereulerian if D contains a spanning eulerian subdigraph.Alsatami et al.introduce the 2-sum of two digraphs,and present sufficient conditions for the 2-sum of two digraphs to be supereulerian.In this paper,we introduce the l-path sum of two digraphs as a generalization of the 2-sum.Moreover,several sufficient conditions for the l-path sum of two digraphs to be superulerian are proved.
出处
《河南科学》
2017年第7期1022-1027,共6页
Henan Science
基金
国家自然科学基金(11501341
11401353
11671296)