期刊文献+

一类型超欧拉有向图 被引量:1

On a Class of Supereulerian Digraphs
下载PDF
导出
摘要 如果一个有向图D包含一个生成欧拉子有向图,那么称D是超欧拉图.Alsatami等人定义了两个有向图的2-和,并且给了两个有向图的2-和是超欧拉图的充分条件.论文将2-和的概念推广到了l-路和,同时给出了一些两个有向图的l-路和是超欧拉图的充分条件. A directed graph D is supereulerian if D contains a spanning eulerian subdigraph.Alsatami et al.introduce the 2-sum of two digraphs,and present sufficient conditions for the 2-sum of two digraphs to be supereulerian.In this paper,we introduce the l-path sum of two digraphs as a generalization of the 2-sum.Moreover,several sufficient conditions for the l-path sum of two digraphs to be superulerian are proved.
出处 《河南科学》 2017年第7期1022-1027,共6页 Henan Science
基金 国家自然科学基金(11501341 11401353 11671296)
关键词 超欧拉有向图 有向图的2-和 有向图的l-路和 哈密尔顿有向路 supereulerian digraph digraph 2-sums digraph l-path sums Hamiltonian dipath
  • 相关文献

参考文献2

二级参考文献16

  • 1Benhocine, A., Clark, L., Kohler, N., et al.: On circuits and pancyclic line graphs. J. Graph Theory, 10, 411 425 (1986).
  • 2Blanusa, D.: Problem ceteriju boja (The problem of four colors). Hrvatsko Prirodoslovno Drustvo Galsnik Mat.-Fiz. Astr. Set. II, 1, 31 42 (1946).
  • 3Boesch, F. T., Suffel, C., Tindell, R.: The spanning subgraphs of eulerian graphs. J. Graph Theory, 1, 79-84 (1977).
  • 4Bondy, J. A., Murty, U. S. R.: Graph Theory with Applications, American Elsevier, New York, 1976.
  • 5Catlin, P. A.: A reduction method to find spanning eulerian subgraphs. J. Graph Theory, 12, 29-45 (1988).
  • 6Catlin, P. A.: Super-Eulerian graphs, a survey. J. Graph Theory, 16, 177-196 (1992).
  • 7Catlin, P. A.: Supereulerian graph, collopsible graphs and 4-cycles. Congressus Numerantium, 56, 223-246 (1987).
  • 8Catlin, P. A., Han, Z. Y., Lai, H.-J.: Graphs without spanning closed trals. Discrete Math., 160, 81-91 (1996).
  • 9Catlin, P. A., Lai, H.-J.: Supereulerian graphs and Petersen graph. J. Combin. Theory, Set. B, 66, 123-139 (1996).
  • 10Chen, Z. H., Lai, H.-J.: Collapsible graphs and matchings. J. Graph Theory, 17, 597 605 (1993).

共引文献9

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部