期刊文献+

基于显著性特征的交通信号灯检测和识别 被引量:7

Traffic Light Detection and Recognition Based on Salience Map
下载PDF
导出
摘要 提出一种基于显著性特征的交通信号灯检测方法,并通过SVM分类器进行识别。首先,对低分辨率图像生成颜色、亮度和边缘特征图并融合成显著图。其次,获取交通信号灯候选区域,利用交通信号灯的几何特征和颜色特征过滤噪点。然后,提取交通信号灯目标,得到只包含单个箭头灯、圆灯和数字灯的区域。最后,提取检测区域的HOG特征,通过SVM分类器进行识别。实验结果表明,该算法检测率和识别率均超过97%。 An approach for detecting traffic lights is proposed based on salience feature, and recognized by SVM. F irs t ly, col-or, luminance and gabor edge feature map are generated in low resolution resolution of image,and merged into saliency map. Sec-ondly ,traffic lights candidate region is obtained,and noise is filtered according to geometric and color features of traffic lights. Thirdly, the objects of traffic lights are obtained, the areas which include only one arrow, circle and digit lights are gotten. Lastly, HOG feature and recognizing are extracted by SVM. Experiment results indicate the detection rate and recognition rate of the pro-posed method are over 97%.
出处 《计算机与数字工程》 2017年第7期1397-1401,共5页 Computer & Digital Engineering
基金 2013-2016国家自然科学基金重大研究计划集成项目(编号:91220301):自主驾驶车辆关键技术与集成验证平台资助
关键词 显著图 交通灯检测 交通灯识别 交通数字灯 图像检测 saliency map, traffic light detection, traffic light recognition, traffic digit light, image detection
  • 相关文献

参考文献5

二级参考文献53

  • 1YEHU S,UMIT O,KEITH R.A robust video based traffic light detection algorithm for intelligent vehicles[C]//IEEE Intelligent Vehicles Symposium.Washington,DC:IEEE Press,2009:521-526.
  • 2KIM Y K,KIM K W,YANG XIAOLI.Real time traffic light recognition system for color vision deficiencies[C]//ICMA 2007:IEEE International Conference on Mechatronics and Automation.Washington,DC:IEEE Press,2007:76-81.
  • 3HWANG T-H,JOO I-H,CHO S-I.Detection of traffic lights for vision-based car navigation system[C]// PSIVT 2006:Pacific Rim Symposium on Advances in Image and Video Technology,LNCS 4319.Berlin:Springer-Verlag,2006:682-691.
  • 4CHUNG Y-C,WANG J-M,CHEN S-W.A vision-based traffic light system at intarsections[J].Journal of Taiwan Normal University:Mathematics,Science and Technology,2002,47(1):67-86.
  • 5de CHARETTE R,NASHASHIBI F.Real time visual traffic lights recognition based on spot light detection and adaptive traffic lights templates[C]// IEEE Intelligent Vehicles Symposium.Washington,DC:IEEE Press,2009:358-363.
  • 6LINDNER F,KRESSEL U,KAELBERER S.Robust recognition of traffic signals[C]// IEEE Intelligent Vehicles Symposium.Washington,DC:IEEE Press,2004:49-53.
  • 7TSAI D-M,LIN C-T.Fast normalized cross correlation for defect detection[J].Pattern Recognition Letters,2003,24(15):2625-2631.
  • 8[美]GONZALEZ R C,WOODS R E,EDDINS S L.数字图像处理:Madab版[M].阮秋琦,译.北京:电子工业出版社,2007,278-282.
  • 9Yung N H C, Lai A H S. An effective video analysis method for detecting red light runners[J]. IEEE Transactions on Vehicular Technology, 2001, 50(4): 1074-1084.
  • 10Chung Y, Wang L, Chen S. A vision-based traffic light detection system at intersections[J]. Journal of National Taiwan Normal University: Mathematics, Science & Technology, 2002, 47: 67-86.

共引文献42

同被引文献36

引证文献7

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部