期刊文献+

采用芦苇干花制备锂离子电池负极材料 被引量:2

Porous carbon material derived from Pharagmites australis dried flowers as an anode for lithium-ion batteries
下载PDF
导出
摘要 本文以芦苇干花为原料,通过氢氧化钾活化致孔制备了多孔碳材料(PC)。采用X射线粉末衍射(XRD)、拉曼光谱、氮气吸附脱附、扫描电镜(SEM)和透射电镜(TEM)等表征手段分析材料的结构与形貌,并进行了恒电流充放电测试以研究其电化学性能。测试结果表明PC材料具有大的比表面积和高的孔隙率,用作锂离子电池负极时,具有较高的容量(在1 A·g^(-1)电流密度下循环100次后,容量为512 m A h·g^(-1))和优良的倍率性能(在2 A·g^(-1)电流密度下,容量为364 m A h·g^(-1))。 In this paper,a porous carbon material( PC) was prepared by KOH activation treatment. X-ray diffraction( XRD) ,Raman spectroscopy,nitrogen adsorption-desorption isotherms,scanning electron microscopy (SEM ) and transmission electron microscopy (TEM)were used to analyze the structure and morphology of the material. Results show that the PC material has a large specific surface area and high porosity. Galvanostatic charge-discharge tests were also carried out to study its electrochemical performance. When used as anode for lithium ion batteries,PC possessed a large lithium storage capacity(512 mAh · g-1 at 1 A·g-1 after 100 cycles) and excellent rate capability(364 mAh·g-1 at the current density of 2 A· g-1).
出处 《化学研究与应用》 CSCD 北大核心 2017年第7期1036-1041,共6页 Chemical Research and Application
关键词 锂离子电池 负极材料 芦苇 多孔碳 lithium ion battery anode material pharagmites australis porous carbon
  • 相关文献

参考文献1

二级参考文献19

  • 1Ryoo R, Joo S H, Jun S. Synthesis of Highly Ordered Carbon Molecular Sieves via Template-Mediated Structural Transformation [J]. J Phys Chem B, 1999, 103(37): 7743-7746.
  • 2Lee K T, Lyric J C, Ergang N S, et al. Synthesis and Rate Performance of Monolithic Maeroporous Carbon Electrodes for Lithium-Ion Secondary Batteries [J]. Adv Funct Mater, 2005, 15(4): 547-556.
  • 3Nakamura M, Nakanishi M, Yamamoto K. Influence of Physical Properties of Activated Carbons on Characteristics of Electric Double-layer Capacitors [J]. J Power Sources, 1996, 60(2): 225-231.
  • 4Dubey K V, Juwarkar A A, Singh S K. Adsorption-Desorption Process Using Wood-Based Activated Carbon for Recovery of Biosurfactant from Fermented Distillery Wastewater [J]. Biotechnol Prog, 2005, 21(3): 860-867.
  • 5Gihaud A, Xue J S, Dahn J R. A Small Angle X-Ray Scattering Study of Carbons Made from Pyrolyzed Sugar [J]. Carbon, 1996, 34(4): 499- 503.
  • 6Fey G T K, Lee D C, Lin Y Y, et al. High-Capacity Disordered Carbons Derived from Peanut Shells as Lithium- Intercalating Anode Materials [J]. Syntb Met, 2003, 139(1): 71 -80.
  • 7Zhang F, Ma H, Chen J S, et al. Preparation and Gas Storage of High Surface Area Microporous Carbon Derived from Biomass Source Cornstalks [J]. Bioresour Technol, 2008, 99(11): 4803-4808.
  • 8ZHANG Feng, LI Guodong, CHEN Jiesheng. Effects of Raw Material Texture and Activation Manner on Surface Area of Porous Carbons Derived from Biomass Resources [J]. J Colloid Interface Sci, 2008, 327(1):108-114.
  • 9ZHANG Feng, WANG Kaixue, LI Guodong, et al. Hierarchical Porous Carbon Derived from Rice Straw for Lithium Ion Batteries with High-Rate Performance [J].Electrochem Commun, 2009, 11(1) : 130-133.
  • 10ZHANG Yu, ZHANG Feng, LI Guodong, et al. Microporous Carbon Derived from Pinecone Hull as Anode Material for Lithium Secondary Batteries [J]. Mater Lett, 2007, 61(30): 5209-5212.

共引文献10

同被引文献25

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部