期刊文献+

基于偏移场的双水平集医学图像分割算法 被引量:1

Segmentation of Medical Images Based on Bias and Double Level Set Algorithm
下载PDF
导出
摘要 针对医学图像中通常伴有灰度不均、背景复杂,无法被传统水平集有效分割的特点,提出了基于偏移场的双水平集算法。为了去除医学图像中灰度不均对分割效果的影响,算法中引入偏移场拟合项,改进双水平集模型,再由改进后的双水平集算法分割医学图像中的多目标区域。实验结果表明,所提算法能有效地解决灰度不均与背景复杂的问题,将伴有灰度不均的多目标医学图像完全分割出来,获得预期的分割效果。 This paper proposes a novel bias and double level set algorithm for medical image,which has a large amount of intensity inhomogeneities and complicated background,and cannot be separated completely by traditional level set. First of all,In order to deal with the effect of intensity inhomogeneities on the medical image,the algorithm introduces a bias fitting term into the improved double level set model and optimizes the coarse-scale segmentation result. Experimental result shows that the algorithm can reduce the problems of intensity inhomogeneities and complicated background,separate medical image including intensity inhomogeneities and multiple objects completely,and obtain the expected effect of segmentation.
出处 《无线电通信技术》 2017年第4期30-34,共5页 Radio Communications Technology
基金 国家自然科学基金项目(61273352 61573307 61473249 61473250)
关键词 医学图像分割 偏移场 双水平集 能量项 medical image segmentation Bias double level set energy item
  • 相关文献

参考文献1

二级参考文献119

  • 1Withey D J, Koles Z J. Three generations of medical image segmentation: Methods and available software. International Journal of Bioelectromagnetism, 2007, 9:67-68.
  • 2Carlos Alexandre Barros de Mello. Biomedical Engineering. Croatia.. InTech, 2009.
  • 3Zuva T, Olugbara O O, O]o S O, et al. Image segmentation, available techniques, developments and open issues. Canadian Journal on Image Processing and Computer Vision, 2011, 2(3): 20-29.
  • 4Yoo T. Insight into Images Principles and Practice for Segmentation, Registration and Image Analysis. Wellesley, Mass.. A K Peters. 2004.
  • 5Zitova B. Image registration methods: A survey. Image and Vision Computing, 2003, 21(11): 977-1000.
  • 6Neera] S, Lalit M A. Automated medical image segmentation techniques. Journal of Medical Physics, 2010, 35(1): 3-14.
  • 7Popilock R, Sandrasagaren K, Harris L, et al. CT artifact recognition for the nuclear technologist. Journal of Nuclear Medical Technology, 2008, 36(2) : 79-81.
  • 8Pham D L, Xu C, Prince J L. Current methods in medical image segmentation. Annual Review of Biomedical Engineering, 2000, 2:315-337.
  • 9Eidheim O C, Aurdal L, Omholt-Jensen T, et al. Segmentation of liver vessels as seen in MR and CT images//Proceedings of the lgth International Congress and Exhibition on Computer Assisted Radiology and Surgery (CARS 2004). Chicago, US, 2004:201-206.
  • 10Bert A, Dmitriev I, Agliozzo S, et al. An automatic method for colon segmentation in CT colonography. Computerized Medical Imaging Graphics, 2009, 33(4): 325-331.

共引文献42

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部