摘要
Avery wide range of the C3^=/C2^= ratio from 0.72 to 7.56 with high C2^= + C3^= selectivity of around 66%in the methanol-to-hydrocarbons process can be realized over ZSM-5 catalyst in a fixed-bed reactor.We firstly conduct a single factor experiment of acidity,demonstrating that the acidity control of MTH catalyst is crucial to adjusting light olefins selectivity.Weak Bronsted acid sites favor to high C3^= selectivity(59.0%)due to the suppression of the conversion reactions from the alkene-based to arene-based cycle,while Lewis acid sites conduce to high C2^= selectivity(39.6%) due to the promotion of the conversion reactions for the aromatics formation and steric constraints of Lewis acid sites making the aromatics crack more efficiently to C2^=.
Avery wide range of the C3^=/C2^= ratio from 0.72 to 7.56 with high C2^= + C3^= selectivity of around 66%in the methanol-to-hydrocarbons process can be realized over ZSM-5 catalyst in a fixed-bed reactor.We firstly conduct a single factor experiment of acidity,demonstrating that the acidity control of MTH catalyst is crucial to adjusting light olefins selectivity.Weak Bronsted acid sites favor to high C3^= selectivity(59.0%)due to the suppression of the conversion reactions from the alkene-based to arene-based cycle,while Lewis acid sites conduce to high C2^= selectivity(39.6%) due to the promotion of the conversion reactions for the aromatics formation and steric constraints of Lewis acid sites making the aromatics crack more efficiently to C2^=.
基金
the National Natural Science Foundation of China(Nos.U1462106 and 21673076)
the National Key Research and Development Program of China(No.2016YFB0701100)