期刊文献+

核心概念学习进阶的理论建构及实证研究——以“几何光学”为例 被引量:5

Theoretical Construction and Empirical Research on the Learning Progressions of the Key Conceptions——Taking Geometrical Optics for Example
下载PDF
导出
摘要 核心概念和学习进阶的提出,对基础教育阶段教学具有重要意义。为此,以几何光学为例,构建几何光学核心概念进阶框架,设计跨年级的几何光学调查量表,并对小学、初中、高中共832名学生进行调查。结果表明:对几何光学核心概念的理解,小学生主要处在经验层级和映射层级,初中生和高中生均主要处在关联层级,且初中生和高中生对几何光学核心概念的理解无显著差异。 The proposal of key concepts and learning progressions is of significance to the elementary education teaching. By taking geometrical optics for example, the author constructed the framework of geometrical optics' key concepts, designed the geometric optics questionnaire cross grades, and surveyed 832 students in primac~ schools, junior high schools and senior high schools respectively. Results show that , for the understanding of the key concepts of geometrical optics, primary school students are mainly in experience level and mapping level, jun- ior high school students and senior high school students are mainly in relation level, and there is no significant difference in junior and senior high school students' understanding.
出处 《天津师范大学学报(基础教育版)》 2017年第3期60-64,共5页 Journal of Tianjin Normal University(Elementary Education Edition)
基金 湖北省教育厅人文社科项目"青少年科学素养进阶发展的理论研究与实践(15Q052)成果之一 湖北省高等学校省级教学研究项目"基于SPOC模式下翻转课堂的研究与实践"(2015270)成果之一
关键词 核心概念 学习进阶 几何光学 key concept learning progressions geometric optics
  • 相关文献

参考文献6

二级参考文献105

  • 1罗冠中.Rasch模型及其发展[J].教育研究与实验,1992(2):40-43. 被引量:5
  • 2Keats J A.Rasch的测验理论[J].心理学报,1990,3:267-271.
  • 3Al-Owidha, A. A. (2007). A comparison of the Rasch model and the three-parameter logistic model applied to the quantitative subtest of the General Aptitude Test, Saudi Arabia (Unpublished Doctoral dissertation). University of Denver, Colorado, USA.
  • 4Andrich, D. (2004). Controversy and the Rasch model: A characteristic of incompatible paradigms? Medical Care, 42, 1-16.
  • 5Bond, T. G., & Fox, C. M. (2007). Applying the Rasch model: Fundamental measurement in the human sciences (2nd ed.). Mahwah, N.J.: Erlbaum.
  • 6Bowles, R. P., & Ram, N. (2006). Using Rasch measurement to investigate volleyball skills and inform coaching. Journal of Applied Measurement, 7(1), 39-54.
  • 7Cheng, Y. Y., Wang, W. C., & Ho, Y. H. (2009). Multidimensional Rasch analysis of a psychological test with multiple subtests: A statistical solution for the bandwidth-fidelity dilemma. Educational and Psychological Measurement, 69, 369-388.
  • 8Custer, M., Omar, M. H., & Pomplun, M. (2006). Vertical scaling with the Rasch model utilizing default and tight convergence settings with WINSTEPS and BILOG-MG. Applied Measurement in Education, 19(2), 133-149.
  • 9Embretson, S. E., & Reise, S. P. (2000). Item Response Theory for Psychologists. Mahwah: Lawrence Erlbaum.
  • 10Fischer, G. H. (1995). Derivations of the Rasch model. In G. H. Fischer & I. W. Molenaar (Eds.), Rasch models: Foundations, recent developments, and applications. New York: Springer Verlag.

共引文献639

同被引文献11

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部