期刊文献+

非线性共振声谱法分析非对称边界条件下的一维缺陷

Nonlinear Acoustic Resonance Spectroscopy Analysis of One Dimensional Defects under Non-symmetric Boundary
下载PDF
导出
摘要 线性共振声谱法可以用来检测含有线性弹性张量的物体缺陷,根据共振频率偏移、几何形状和密度共同确定在样本中的位置。但是如果是微小缺陷,应力和应变会呈现非线性关系,因此非线性共振声谱法是通过研究振幅和共振频率的关系来确定缺陷的位置和非线性的程度。本文采用非线性共振声谱法分析非对称边界条件下的缺陷,给出非对称边界经典非线性和非经典非线性下的共振频率偏移及高次谐波表达式,并且数值模拟结果表明此方法可以清楚分辨左、右缺陷的位置。 Linear acoustic resonance spectroscopy method can be used to determine the posmon ot the defects with linear elasticity tensors, which is dependent on the shift of the resonant frequency, geometric shapes and densities of the sample. But if there is a minor defect, there will be a nonlinear relationship between stress and strain, so the position and the extent of the defects can be determined through the relationship between the amplitude and the resonance frequency by nonlinear acoustic resonance spectroscopy. In this paper, using nonlinear resonance ultrasound spectroscopy to analysis the defects with non-symmetric boundary conditions, the expression of the shift of resonance frequency and the amplitude of the high harmonics are given under classical nonlinear/ty and non-classical nonlinearity, and the numerical simulation results show that this method can be used to clearly distinguish the left and right locations of the defects.
出处 《中国特种设备安全》 2017年第5期19-25,31,共8页 China Special Equipment Safety
基金 国家重点研发计划(批准号:2016YFF20300) 国家自然科学基金项目(批准号11274166,11474160) 声场声信息国家重点实验室开放课题研究基金(批准号:SKLOA201609)
关键词 非对称边界 非线性共振声谱法 非经典非线性 经典非线性 Non-symmetric boundary Nonlinear acoustic resonance spectroscopy Non-classicalnonlinearity Classical nonlinearity
  • 相关文献

参考文献3

二级参考文献47

  • 1Landau L D, Lifshitz E M. Theory of elasticity. Oxford: Pergamon, 1986
  • 2K.Van Den Abeele. Elastic pulsed wave propagation in media with second-or high order non-linearity. J. Acoust. Soc. Am., 1996; 90(6): 3334--3345
  • 3Delsanto P P. Connection Machine simulation of ultrasonic wave propagation in materials. I: the one-dimensional case. Wave Motion, 1992; 16(1): 65--80
  • 4Delsanto P P. Connection machine simulation of ultrasonic wave propagation in materials. Ⅱ: the two-dimensional case. Wave Motion, 1994; 20(4): 295-314
  • 5Ostrovsky L, Johnson P A. Dynamic nonlinear elasticity in geomaterials. Riv. Nuovo Cimento Ital. Phys. Soc., 2001;24(7): 1-46
  • 6Preisach F. Uber die magnetische Nachwlrkung, ("About the magnetic after effect") Z.Phys. 1935; 94(5-6): 277-302
  • 7Mayergoyz I D. Hysteresis models from the mathematical and control theory points of view. J. Appl. Phys., 1985; 57(8): 3803--3805
  • 8McCall K R, Guyer R. A. Equation of state and wave propagation in hysteretic nonlinear materials. Journal of Geophysical Research, 1994; 99(B12): 23887-23897
  • 9McCall K R, Guyer R A. A new theoretical paradigm to describe hysteresis, discrete memory and nonlinear elastic wave propagation in rock. Nonlinear Processes in Geophysical 1996:89-101
  • 10Koen Van Den Abeele. Multi-mode nonlinear resonance ultrasound spectroscopy for defect imaging: An analytical approach for the one-dimensional case. J. Acoust. Soc. Am., 2007; 122(1): 73--90

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部