摘要
本文研究了复Grassmann流形中极小曲面的两种迷向性质之间的关系.首先给出了实迷向的定义,之后用整体微分形式刻画实迷向性质,然后介绍Calabi的线丛上的联络理论作为主要计算方法,最终运用调和序列理论证明复迷向性质强于实迷向.作为应用,本文证明了复射影空间中的极小二维球面是实强迷向的.
In this paper, we study the real isotropic minimal two-sphere immersed in a complex Grassmann manifold. Firstly, we define the real isotropic property and give equivalence definition in terms of global differential forms. Then we introduce Calabi's theory of connections on the line bundles as our main calculation method,finally we show that holomorphic isotropic is stronger than real isotropic. As an application of this result, we show that minimal two-sphere in a complex projective space is real strongly isotropic.
出处
《中国科学:数学》
CSCD
北大核心
2017年第7期827-840,共14页
Scientia Sinica:Mathematica
基金
国家自然科学基金(批准号:11471308和11331002)资助项目
关键词
实迷向
极小曲面
调和序列
real isotropic
minimal surface
harmonic sequence