期刊文献+

激波诱导火焰失稳与爆轰的条件研究 被引量:1

Conditions for shock wave induced flame instability and detonation
下载PDF
导出
摘要 采用九阶WENO和十阶中心差分格式数值求解激波与火焰作用过程,考察了激波强度、火焰尺寸对激波与球形火焰作用过程的影响。结果表明,增大激波强度或火焰尺寸均可在流场中引发爆轰,但激波强度的影响更大,并且其引发的爆轰可使火焰迅速膨胀,放热率提高,从而影响燃烧特性;此外,爆轰波传播过程中会迅速消耗可燃预混气,合并原有的反射激波,并在流场中形成局部高压区,极大地改变流场结构。 A computational study of the interaction between shock waves and a spherical flame was carried out using the ninth-order WENO and the tenth-order central difference schemes, and the influ-ence of shock intensity and flame size on the interaction process was investigated. It can be found from the results of our study that the increase of the shock intensity and the flame size can both induce det-onation in the flow field,but the influence of the shock intensity is relatively stronger. Further,the detonation induced by shock wave can lead to quick flame expansion and increase its heat release rate, thereby affecting the combustion characteristics. Besides, the detonation wave will quickly burn outthe combustible gas,merge the previously existing reflected shock waves in the propagation process, and form local high pressure zones,which can significantly alter the flow field structure.
出处 《爆炸与冲击》 EI CAS CSCD 北大核心 2017年第4期741-747,共7页 Explosion and Shock Waves
基金 国家自然科学基金项目(11402102 11372140) 江苏省自然科学基金青年项目(BK20140524) 江苏省博士后基金项目(1402013B) 江苏大学高级专业人才科研启动基金项目(14JDG031)
关键词 激波 火焰 爆轰 流场结构 shock wave flame detonation flow field structure
  • 相关文献

参考文献6

二级参考文献65

  • 1陈永刚,何立明,刘建勋.时空守恒元和解元方法的爆震波一维数值模拟[J].推进技术,2005,26(3):256-259. 被引量:5
  • 2Markstein G H. Nonsteady flame propagation[M]. New York: MacMillan, 1964.
  • 3王超,施红辉.激波诱导燃烧转爆轰数值模拟[C]//中国科技大学近代力学系.第14届全国激波与激波管学术会议论文集.安徽黄山,2010:164-167.
  • 4Joseph Y, Toshi K, Edward E. Application of shock-induced mixing to supersonic combustion[J]. AIAA J, 1993, 31:854-862.
  • 5Gamezo V N, Khokhlov A M, Oran E S. The influence of shock bifurcation on shock-flame interactions and DDT[J]. Proc. Combustion Institute, 2001, 29:1810-1826.
  • 6Bonnie J M, Michael J Z. Sanford gordon NASA glenn coefficients for calculating thermodynamic properties of individual species[M]. Maryland: NASA Glenn Research Center, 2002.
  • 7Khokhlov A M, Oran E S. Numerical simulation of detonation initiation in a flame brush: the role of hot spots[J].Combustion and Flame, 1999, 3: 400-416.
  • 8Zhang Z C, Yu S T. A modified space-time conversation element and solution element method for Euler and Navier-Stokes equations[J], AIAA J, 1999, 37: 299-327.
  • 9Chang S C. The method of space-time conservation element and solution element-a new approach for solving the Navier- Stokes and Euler equations[J]. J Comp Phys, 1995, 119: 295-324.
  • 10Maran S P, Sonneborn G, Pun C S J, et al. Physical conditions in circumstellar gas surrounding SN 1987A 12 years after outburst[J]. Astrophysical Journal, 2000,545 (1) : 390-398.

共引文献17

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部