摘要
对气象预报中的阴雨雾图像的识别,能够更好的识别低分辨率图像中有用的但是没有表现出来的信息。对低分辨率图像的优化识别,需要获取图像整体色度差均值,将图像目标区域的轮廓变得光滑,完成对阴雨雾图像的识别。传统方法先提取图像的相位和幅值特征,将直方图定义为图像的特征向量,但忽略了获取图像整体色度差均值,导致图像识别精度较低。提出基于二次最大熵的模糊聚类的阴雨雾图像识别方法。利用多尺度Retinex变换理论对图像的亮度进行增强,将低分辨率图像分割为目标区域和非目标区域,获取图像整体色度差均值,给出低分辨率图像的最大判断准则,利用形态学滤波将图像目标区域的轮廓变得光滑,完成对阴雨雾低分辨率图像优化识别。实验结果表明,所提方法识别精度高,可以有效地识别出阴雨雾低分辨率图像中的重要信息。
In this paper, we propose a recognition method for cloudy, rainy, and foggy image based on fuzzy clus- tering of secondary maximum entropy. Firstly, multi-scale Retinex conversion theory was used to enhance brightness of image, and image with low resolution was divided into object region and non-object area. Then, mean value of o- verall color difference of image was acquired, and maximum judgment criteria of image with low resolution were pro- vided. Moreover, morphological filter was used to turn outline of the object area into smooth. Finally, the optimiza- tion recognition was completed. The experimental resuhs show that the method has high recognition precision and can recognize important information in cloudy, rainy, and foggy image with low resolution effectively.
出处
《计算机仿真》
北大核心
2017年第7期422-425,共4页
Computer Simulation
基金
基金项目:北京地区地磁场三维可视化研究与实现(KM201311417005)
关键词
气象预报
低分辨率图像
识别
Weather forecast
Image with low resolution
Recognition