期刊文献+

网络中高速信息移动节点位置预测仿真

Simulation of Location Prediction of High Speed Mobile Node in Network
下载PDF
导出
摘要 对网络中高速信息移动节点位置进行预测,能够提升网络数据采集和信息转发的质量。对移动节点位置进行预测时,由于节点位置的真实值和预报值存在误差,导致得到的移动节点运动累计时间过长。传统方法利用均值漂移和联合粒子滤波,获取移动节点运动累计时间,但过程复杂,导致节点位置预测精度偏低。提出基于马尔科夫链的网络中高速信息移动节点位置预测方法。融合于ARIMA模型预测出节点下一时刻的地理位置,获取节点的累计保持时间预测值,计算出节点位置真实值和预报值之间的均方误差,得到高速信息移动节点运动累计保持时间,融合于马尔科夫链原理计算出高速信息移动节点到达所有位置的概率分布,完成对网络中高速信息移动节点位置预测。仿真证明所提方法对高速信息移动节点位置预测更准确。 In this paper, the author proposes a location prediction method of high-speed information mobile node in network based on Markov chain. Firstly, geographic location of node on next moment integrated with ARIMA model was predicted and prediction value of node cumulative holding time was acquired. Then mean square error between true value and prediction value of node location was worked out and movement cumulative holding time of high-speed information mobile node was acquired. Moreover, the probability distribution of high-speed information mobile node arriving all location integrated with the Markov chain theory was worked out. Simulation results show that the method can predict the location on high-speed information mobile node more accurately.
作者 温斯琴
出处 《计算机仿真》 北大核心 2017年第7期432-435,共4页 Computer Simulation
基金 物联网标识方案与服务建模的研究--内蒙古自治区教育厅项目(NJZY14205)
关键词 网络 高速信息移动节点 位置预测 Network High-speed information mobile node Position prediction
  • 相关文献

参考文献10

二级参考文献97

  • 1卿利,朱清新,王明文.异构传感器网络的分布式能量有效成簇算法[J].软件学报,2006,17(3):481-489. 被引量:159
  • 2Shetty N K, Baker M R. Fatigue reliability of tubular joints in offshore structures: reliability analysis[C]// Proceedings 9th International Conference on Offshore Mechanics and Arctic Engineering. Houston TX: American Society of MechanicM Engineers, 1990.
  • 3JI Chun yan, I.I Shan-shan, CHEN Ming-lu. A global reliability assessment method on aging offshore plat- forms with corrosion and cracks [J]. China Ocean Engineering, 2009, 23(2) : 199- 210.
  • 4Loeve M. Probability theory[M]. Berlin: Springer- Verlag Inc, 1977.
  • 5Thomas J W. Numeral partial diferential equations finite difference methods[M]. New York: Springer- Verlag Inc, 1995.
  • 6S Tomonobu, et al. One - Hour - AheadLoad Forecasting Using NeuralNetworks[ J]. IEEE Transaction Sonpower Systems, 2002, 17(1): 113-118.
  • 7G B Huang, Q Y Zhu, C K Siew. Extreme learning machine: theory and applications [ J ]. Neurocomputing, 2006,70 ( 1 - 3 ) : 489 - 501.
  • 8G B Huang, Q Y Zhu, C K Siew. Extreme learning machine: a new learning scheme of feedforward neural networks [ C ]. in Proc. Int. Joint Conf. Neural Networks (IJCNN2004), Buda- pest, Hungary, Jul. 25 - 29, 2004,2:985 - 990.
  • 9G Smaragdakis, I Matta, A Bestavros. SEP: A stable election pro- tocol for clustered heterogeneous wireless sensor network[ C]. Proc of the 2nd International Workshop on Sensor and Actor Network Protocols and Applications. 2004.
  • 10W Heinzelman, A Chandrakasan, H Balakr Ishnan. Energy - effi- cient communication protocol for wireless sensor networks [ C ]. Proc of Hawaii International Conference on System Sciences. Washington DC : IEEE Computer Society, 2000 : 175 - 187.

共引文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部