期刊文献+

一种基于统计学习理论的最小生成树图像分割准则 被引量:4

A Image Segmentation Method Based on Statistics Learning Theory and Minimum Spanning Tree
原文传递
导出
摘要 根据基于区域增长的面向对象图像分割的本质特点,将统计学习理论与最小生成树算法相结合,提出了一种基于统计学习理论的最小生成树图像分割准则。将该图像分割准则应用于多种遥感影像数据进行分割实验,其结果表明基于统计学习理论的最小生成树图像分割准则能通过简便的参数设置,即可以较好地实现不同尺度目标的图像分割,同时又能对纹理区域进行有效分割,能获得良好的区域边界和较好的抗噪声性能,并在海岸带大比例尺无人机正射影像的图像分割实践中得到了较好验证。 According to the essential feature of object-oriented image segmentation method,this paper explores a minimum span tree(MST)based image segmentation method.We define an edge weight based optimal criterion(merging predicate)which based on statistical learning theory(SLT),a scale control parameter is used to control the segmentation scale.Experiments based on the high resolution UAV images show that the proposed merging predicate can keep the integrity of the objects and do well on preventing over segmentation.It also proves its efficiency in segmenting the rich texture images while can get good boundary of the object.
作者 王平 魏征 崔卫红 林志勇 WANG Ping WEI Zheng CUI Weihong LIN Zhiyong(South China Sea Institute of Planning and Environment Research, the State Oceanic Administration, Guangzhou 510300, China School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China)
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2017年第7期877-883,共7页 Geomatics and Information Science of Wuhan University
基金 海洋公益性行业科研专项(201305020-7) 深圳大学空间信息智能感知与服务深圳市重点实验室开放研究基金(201302) 国家海洋局南海分局海洋科学技术局长基金 国家自然科学基金(41101410) 湖北省自然科学基金(2011CDB273)~~
关键词 统计学习 最小生成树 图像分割准则 statistical learning minimum spanning tree(MST) image segmentation rule
  • 相关文献

参考文献1

二级参考文献8

  • 1Geman S, Geman D. Stochastic Relaxation, Gibbs Distributions and the Bayesian Restoration of Images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984, 6(6): 721-741.
  • 2Xia Yong, Feng Dagan, Zhao Rongchun. Adaptive Segmentation of Textured Images by Using the Coupled Markov Random Field Model [J]. IEEE Transactions on Image Processing, 2006, 15 (11) :3 559-3 566.
  • 3Bouman C A, Shapiro M. A Multiscale Random Field Model for Bayesian Image Segmentation[J]. IEEE Transactions on Image Processing, 1994, 3(2):162-178.
  • 4Bouman C, Liu B. Multiple Resolution Segmentation of Textured Images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13: 99-113.
  • 5Besag J. On the Statistical Analysis of Dirty Pictures (with Discussions)[J]. Journal of the Royal Statistical Society, 1986, 48(B) :259-302.
  • 6Brodatz P. Textures: a Photographic Album for Artists and Designers[D]. New York: Dover, 1966.
  • 7刘国英,罗伦才,梅天灿,秦前清.基于MRMRF的多光谱纹理影像分割方法[J].武汉大学学报(信息科学版),2008,33(9):963-966. 被引量:8
  • 8刘国英,茅力非,王雷光,秦前清.基于小波域分层Markov模型的纹理分割[J].武汉大学学报(信息科学版),2009,34(5):531-534. 被引量:9

共引文献6

同被引文献27

引证文献4

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部