期刊文献+

基于PSO的改进BP算法在变压器故障诊断上的研究

Fault Diagnosis for Transformer Based on PSO-BP Algorithm
下载PDF
导出
摘要 变压器是电力系统的重要组成部分,其运行状态对电力系统的稳定、安全运行有着重要的意义。研究变压器故障诊断方法,加强变压器的运行维护,可以有效减少故障隐患所带来的安全事故。BP神经网络具有并行分布式计算、自适应、记忆及聚类等诸多优点,能准确表达变压器油中溶解气体与变压器内部故障之间存在的映射关系;但是BP算法存在收敛速度慢、易陷入局部极小点的缺陷,而PSO算法具有全局寻优的能力,可有效地改善BP神经网络收敛速度,提高故障诊断准确率。将BP神经网络模型与PSO算法改进的BP神经网络模型应用于变压器故障诊断,结果表明,故障诊断的可靠性和准确性都得到了明显提高。 Transformer is an important part of power system. Its operation state of power system stability and safe op- eration is of great significance. The transformer fault diagnosis methods can strengthen the operation of the transformer ma- intenance, and can effectively reduce the problems brought about by the safety accident. The BP neural network with adap- tive, parallel and distributed computation, memory and clustering, and many other advantages can accurately express the dissolved gas in transformer oil and the mapping relationship between the internal fault of transformer. But BP algorithm is with slow convergence speed and easy to fall into local minimum point defects. However, the PSO algorithm has the ability of global optimization, which can effectively improve the convergence speed of BP neural network, enhance the accuracy of fault diagnosis. In this paper, the BP network model and the improved PSO algorithm of BP network model is applied to transformer fault diagnosis. The results show that the reliability of the diagnosis accuracy of PSO-BP algorithm is improved obviously.
作者 孙晓娟
出处 《新技术新工艺》 2017年第7期65-69,共5页 New Technology & New Process
关键词 变压器 故障诊断 油中溶解气体 PSO算法 BP神经网络 transformer, fault diagnosis, gases dissolved in transformer oil, PSO algorithm, BP neural network
  • 相关文献

参考文献6

二级参考文献86

  • 1黄敏,方晓柯,王建辉,顾树生.基于多值编码的混合遗传算法的小波神经网络优化[J].系统仿真学报,2004,16(9):2080-2082. 被引量:15
  • 2王南兰,邱德润.基于多值编码混合遗传算法的变压器故障诊断[J].电气应用,2006,25(6):103-105. 被引量:4
  • 3潘翀,陈伟根,云玉新,杜林,孙才新.基于遗传算法进化小波神经网络的电力变压器故障诊断[J].电力系统自动化,2007,31(13):88-92. 被引量:62
  • 4虞和济,陈长征,张省等.基于神经网络的智能诊断[M].北京:冶金工业出版社,1998(2).
  • 5孙才新,陈伟根,李俭,廖瑞金.电气设备油中气体在线监测与故障诊断技术[J].
  • 6John Platt. A Resoure - Allocating network for Function Inte rpolation [ J ]. Neural Computation, 2002, 3 (5) : 213-255.
  • 7Nobuyuki Matsui, Masato Takai, Haruhiko Nishimura. Neural network based on QBP and its performance, IEEE Internationnal Workshop on Robot and Human Interactive Communication Osaka, Japan, 2000.
  • 8Noriaki Kouda, Nobuyuki Mztsui, Masato Takai. Image Compression by Layered Quantum Neural Networks. Neural Processing Letters. 2002 (16):67-80.
  • 9Barry H Ward. stan Lindgren. A survey of develop mcnts in insulation Monitoring of power transformers[C]. IEEE International Symposium on Electrical Insulation. Amaheim, CA, USA, 2000, 141-147.
  • 10Junhua Yang, Boli Liu, Caixia liu, etal. Theapplication of evidence theoryi in the Field of equipment fault dingnosis[C]. Proceeding of the Sixth world congresson In telligent control and autonatlon. Dalian, China, 2006 (2) : 5824- 5827.

共引文献134

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部