期刊文献+

Enhanced electrocatalytic activity of Co@N-doped carbon nanotubes by ultrasmall defect-rich TiO2 nanoparticles for hydrogen evolution reaction 被引量:8

Enhanced electrocatalytic activity of Co@N-doped carbon nanotubes by ultrasmall defect-rich TiO2 nanoparticles for hydrogen evolution reaction
原文传递
导出
摘要 Despite being technically possible, splitting water to generate hydrogen is practically unfeasible, mainly because of the lack of sustainable and efficient earth-abundant catalysts for the hydrogen-evolution reaction (HER). Herein, we report a durable and highly active electrochemical HER catalyst based on defect-rich TiO2 nanoparticles loaded on Co nanoparticles@N-doped carbon nanotubes (D-TiOdCo@NCT) synthesized by electrostatic spinning and a subsequent calcining process. The ultrasmall TiO2 nanoparticles are 1.5-2 nm in size and have a defect-rich structure of oxygen vacancies. D-TiO2/Co@NCT exhibits excellent HER catalytic activity in an acidic electrolyte (0.5 M H2SO4), with a low onset potential of -57.5 mV (1 mA·cm^-2), a small Tafel slope of 73.5 mV·dec^-1, and extraordinary long-term durability. X-ray photoelectron spectroscopy, electron paramagnetic resonance spectroscopy, and theoretical calculations confirm that the Ti3. defect-rich structure can effectively regulate the catalytic activity for electrochemical water splitting. Despite being technically possible, splitting water to generate hydrogen is practically unfeasible, mainly because of the lack of sustainable and efficient earth-abundant catalysts for the hydrogen-evolution reaction (HER). Herein, we report a durable and highly active electrochemical HER catalyst based on defect-rich TiO2 nanoparticles loaded on Co nanoparticles@N-doped carbon nanotubes (D-TiOdCo@NCT) synthesized by electrostatic spinning and a subsequent calcining process. The ultrasmall TiO2 nanoparticles are 1.5-2 nm in size and have a defect-rich structure of oxygen vacancies. D-TiO2/Co@NCT exhibits excellent HER catalytic activity in an acidic electrolyte (0.5 M H2SO4), with a low onset potential of -57.5 mV (1 mA·cm^-2), a small Tafel slope of 73.5 mV·dec^-1, and extraordinary long-term durability. X-ray photoelectron spectroscopy, electron paramagnetic resonance spectroscopy, and theoretical calculations confirm that the Ti3. defect-rich structure can effectively regulate the catalytic activity for electrochemical water splitting.
出处 《Nano Research》 SCIE EI CAS CSCD 2017年第8期2599-2609,共11页 纳米研究(英文版)
基金 We thank the Fundamental Research Funds for the Central Universities (No. D2153880), Project of Public Interest Research and Capacity Building of Guangdong Province (No. 2014A010106005) and the National Natural Science Foundation of China (No. 51502096).
关键词 ultrasmall nanoparticle TiO2 defect structure carbon nanotube hydrogen-evolution reaction ultrasmall nanoparticle, TiO2, defect structure, carbon nanotube, hydrogen-evolution reaction
  • 相关文献

参考文献5

二级参考文献61

  • 1Morales-Guio, C. G.; Sterna, L. A.; Hu, X. L. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev. 2014, 43, 6555-6569.
  • 2Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148-5180.
  • 3Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060-2086.
  • 4Faber, M. S.; Jin, S. Earth-abundant inorganic electrocatalysts and their nanostrucuares for energy conversion applications.Energy Environ. Sci. 2014, 7, 3519-3542.
  • 5Greeley, J.; Jaramillo, T. F.; Bonde, J.; Chorkendorff, 1.; Norskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 2006, 5, 909-913.
  • 6Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446-6473.
  • 7Skoulason, E.; Karlberg, G. S.; Rossmeisl, J.; Bligaard, T.; Greeley, J.; J6nsson, H.; Norskov, J. K. Density functional theory calculations for the hydrogen evolution reaction in an electrochemical double layer on the Pt(Ⅲ) electrode. Phys. Chem. Chem. Phys. 2007, 9, 3241-3250.
  • 8Lee, Y.; Suntivich, J.; May, K. J.; Perry, E. E.; Shao-Horn, Y. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 2012, 3, 399404.
  • 9Ledendecker, M.; Krick Calder6n, S.; Papp, C.; Steinriick, H. P.; Antonietti, M.; Shalom, M. The synthesis of nano- structured NisP4 films and their use as a non-noble bifunctional electrocatalyst for full water splitting. Angew. Chem., Int. Ed. 2015, 127, 12538 -12542.
  • 10Dai, L. M.; Xue, Y. H.; Qu, L. T.; Choi, H.-J.; Baek, J.-B. Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 2015, 115, 4823-4892.

共引文献48

同被引文献22

引证文献8

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部