期刊文献+

Nanowire encapsulation with polymer for electrical isolation and enhanced optical properties 被引量:1

Nanowire encapsulation with polymer for electrical isolation and enhanced optical properties
原文传递
导出
摘要 Light management and electrical isolation are essential for the majority of optoelectronic nanowire (NW) devices. Here, we present a cost-effective technique, based on vapor-phase deposition of parylene-C and subsequent annealing, that provides conformal encapsulation, anti-reflective coating, improved optical properties, and electrical insulation for GaAs nanowires. The process presented allows facile encapsulation and insulation that is suitable for any nanowire structure. In particular, the parylene-C encapsulation functions as an efficient antireflection coating for the nanowires, with reflectivity down to 〈1% in the visible spectrum. Furthermore, the parylene-C coating increases photoluminescence intensity, suggesting improved light guiding to the NWs. Finally, based on this process, a NW LED was fabricated, which showed good diode performance and a clear electroluminescence signal. We believe the process can expand the fabrication possibilities and improve the devices. performance of optoelectronic nanowire Light management and electrical isolation are essential for the majority of optoelectronic nanowire (NW) devices. Here, we present a cost-effective technique, based on vapor-phase deposition of parylene-C and subsequent annealing, that provides conformal encapsulation, anti-reflective coating, improved optical properties, and electrical insulation for GaAs nanowires. The process presented allows facile encapsulation and insulation that is suitable for any nanowire structure. In particular, the parylene-C encapsulation functions as an efficient antireflection coating for the nanowires, with reflectivity down to 〈1% in the visible spectrum. Furthermore, the parylene-C coating increases photoluminescence intensity, suggesting improved light guiding to the NWs. Finally, based on this process, a NW LED was fabricated, which showed good diode performance and a clear electroluminescence signal. We believe the process can expand the fabrication possibilities and improve the devices. performance of optoelectronic nanowire
出处 《Nano Research》 SCIE EI CAS CSCD 2017年第8期2657-2666,共10页 纳米研究(英文版)
关键词 ANTIREFLECTION GaAs parylene-C metallo-organic vapor phase epitaxy (MOVPE) annealing light emitting diode (LED) antireflection, GaAs, parylene-C, metallo-organic vapor phase epitaxy (MOVPE), annealing, light emitting diode (LED)
分类号 O [理学]
  • 相关文献

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部