期刊文献+

基于广义回归神经网络的金属矿山水害危险性预测 被引量:3

Prediction of water hazard in metal mines based on general regression neural network
下载PDF
导出
摘要 水害是金属矿山重大灾害之一,正确预测水害危险性及变化趋势,对矿山安全生产具有重要的指导意义。在分析水害影响因素和广泛参考其他预测模型的基础上,以矿山地质构造、裂隙发育状况、降水量、采空区面积、地下水水位、回采工艺、开采深度、有无预注浆、含水层层数、围岩岩性等10个影响因素作为预测输入,以有水害危险、无水害危险作为预测输出,建立了GRNN预测模型,并应用MATLAB软件编程,对某金属矿山样本进行了训练和预测。研究结果表明,预测结果最大误差仅为7.62%。GRNN模型预测精度高,对金属矿山水害危险性预测和防治具有借鉴意义。 Water hazard is one of the major disasters in metal mines. Therefore,proper prediction of water hazard and its trends bear great guiding significance for mining operations. Based on the analysis of influence factors on water hazard and comprehensive reference to other prediction models,the paper inputs 10 influence factors including geologic structures of mines,fissure development conditions,precipitation,goaf areas,ground water levels,extraction processes,mining depth,whether grouting or not,aquifer number and lithology of surrounding rocks,while outputs water hazard as " positive" or " negative". Thus a GRNN prediction model is established,and with MATLAB programming,training and prediction of samples from a metal mine are conducted. The results show that the maximum error is only7. 62 %. The GRNN model has high prediction precision and can provide reference for the prediction and prevention of water hazard in metal mines.
出处 《黄金》 CAS 2017年第7期63-66,共4页 Gold
关键词 广义回归神经网络 金属矿山 水害危险性预测 样本 光滑因子 GRNN metal mine water hazard prediction sample smoothing factor
  • 相关文献

参考文献3

二级参考文献18

共引文献162

同被引文献13

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部