期刊文献+

基于正交信号校正的Vis-NIR光谱土壤质地预测 被引量:6

Prediction of soil texture using Vis-NIR spectra based on orthogonal signal correction
下载PDF
导出
摘要 为提高基于VIS-NIR光谱的土壤质地预测精度,引入了正交信号校正(OSC)光谱预处理算法。分别用原始光谱、微分处理、OSC处理光谱,建立偏最小二乘回归(PLSR)模型。结果表明,OSC-PLSR模型验证精度高于其他两种方法所建模型,砂粒含量OSC-PLSR模型的RMSEp为5.94,粘粒含量OSC-PLSR模型RMSEp为1.25,相比PLSR模型,分别降低22.22%和9.42%。OSC算法在土壤质地的VIS-NIR反演中能有效消除不相关因素的影响,提高模型预测精度。 In order to improve the prediction accuracy soil texture based on VIS-NIR spectra this paper introduces the orthogonal signal correction( OSC) spectra pretreatment method. Separate partial least squares regression( PLSR) model was established using the original spectrum,derivative analysis spectra,and OSC processing spectra respectively. The results showed that OSC-PLSR model validation's accuracy is higher than that of the other two models. The RMSEp of prediction from the OSC-PLSR models of content of sand and clay separates were 5. 94 and 1. 25,which were 22. 22% and 9. 42%lower than of the PLSR model respectively. The results of this research showed OSC algorithm can effectively eliminate the influence of unrelated factors and improve the accuracy of prediction when using Vis-NIR spectra to predict soil texture.
作者 王德彩 蔚霖 张俊辉 杨红震 黄家荣 孙孝林 WANG Deeai WEI Lin ZHANG Junhui YANG hongzhen HUANG Jiarong SUN Xiaolin(College of Forestry, Henan Agricultural University, Zhengzhou 450002, China College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China College of Geographical Science and Planning, Sun Yat-sen University, Guangzhou 510275, China)
出处 《河南农业大学学报》 CSCD 北大核心 2017年第3期408-413,共6页 Journal of Henan Agricultural University
基金 国家自然科学基金项目(41201210)
关键词 Vis-NIR光谱 土壤质地 正交信号校正 偏最小二乘回归 Vis-NIR spectroscopy soil texture orthogonal signal correction partial least squares regression
  • 相关文献

参考文献11

二级参考文献135

共引文献790

同被引文献94

引证文献6

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部