期刊文献+

Off-axis two-mirror laser communication antenna designed using differential equations

Off-axis two-mirror laser communication antenna designed using differential equations
原文传递
导出
摘要 In satellite laser communication technology, which is built between planets and between a planet and the Earth, the optical antenna is the key point. Thus, research on optical system design is important. The off-axis reflective system has no obscuration and hence possesses a high efficiency for energy transfer. This study proposes a novel method for designing a free-form off-axis reflective imaging system. This study also introduces differential equations that depend on Fermat's principle and sine condition. Finally, a free-form off-axis two-mirror optical system was designed by using the differential equation method. This system includes one intermediate image plane, in which the field of view (FOV) is -5° to -4° in the y-axis and -1° to 0° in the x-axis. The modulation transfer function was greater than 0.7 at 50 lp/mm, and the efficiency of energy transmission was high. The free-form off-axis two-mirror optical system involves a wide range of application prospects in the optical antenna used in the satellite laser communication systems. Moreover, the design method that used differ- ential equations was proven simple and effective. In satellite laser communication technology, which is built between planets and between a planet and the Earth, the optical antenna is the key point. Thus, research on optical system design is important. The off-axis reflective system has no obscuration and hence possesses a high efficiency for energy transfer. This study proposes a novel method for designing a free-form off-axis reflective imaging system. This study also introduces differential equations that depend on Fermat's principle and sine condition. Finally, a free-form off-axis two-mirror optical system was designed by using the differential equation method. This system includes one intermediate image plane, in which the field of view (FOV) is -5° to -4° in the y-axis and -1° to 0° in the x-axis. The modulation transfer function was greater than 0.7 at 50 lp/mm, and the efficiency of energy transmission was high. The free-form off-axis two-mirror optical system involves a wide range of application prospects in the optical antenna used in the satellite laser communication systems. Moreover, the design method that used differ- ential equations was proven simple and effective.
出处 《Frontiers of Optoelectronics》 EI CSCD 2017年第2期166-173,共8页 光电子前沿(英文版)
基金 This study was supported by the Youth Innovation Promotion Association, Chinese Academy of Sciences and the National Science Foundation for Young Scholars of China (Grant No. 61505203).
关键词 optical antenna design off-axis reflectivesystem satellite laser communication optical antenna design, off-axis reflectivesystem, satellite laser communication
  • 相关文献

参考文献7

二级参考文献38

共引文献90

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部