期刊文献+

基于高斯消元法下的最佳平方逼近算法效率分析——以一道ACM试题为例 被引量:3

EFFICIENCY ANALYSIS OF OPTIMAL SQUARE APPROXIMATION ALGORITHM BASED ON GAUSSIAN ELIMINATION METHOD:AN EXAMPLE OF QUESTION ABOUT ACM
下载PDF
导出
摘要 针对ACM数值计算分析类的防AK试题,一般可以利用克拉默法则最佳平方逼近、高斯消元最佳平方逼近、Hilbert矩阵Cholesky分解平方逼近和切比雪夫多项式正交等方法求解。以第39届ACM-ICPC西安邀请赛的一道防AK题为例,对这几种典型算法进行实验分析,并在反复实验中对算法参数进行修正,然后进行质量与效率的分析。测试结果表明,高精度高斯消元最佳平方逼近解法求解ACM数值计算分析类的防AK试题,优于克拉默法则最佳平方逼近、普通高斯消元最佳平方逼近和Hilbert矩阵Cholesky分解平方逼近,是解决数值计算分析类问题的一种有效方法。 Aiming at the anti-AK problem of ACM numerical analysis, we generally use the best square approaching based on Cramer Rule, the best squared approaching of the Gaussian elimination, the square approaching under Cholesky decomposition of the Hilbert matrix and the Chebyshev polynomial Orthogonal method solution. In this article, we take an anti-AK problem in the 39th ACM-ICPC Xian Invitational Tournament as an example to analyze the typical algorithms and modify the algorithm parameters in repeated experiments. The test results showed that the best squared approximation of the Gaussian elimination method was an effective method to solve anti-AK problem of ACM numerical analysis, which is better than the best square approximation of the ordinary Gaussian elimination and the square approximation of the Cholesky factorization of the Hilbert matrix.
作者 罗兴 钱佳威
出处 《计算机应用与软件》 2017年第8期291-295,共5页 Computer Applications and Software
关键词 数值计算分析 ACM-ICPC 最佳平方逼近 算法 Hilbert矩阵 Numerical calculat ion analysis ACM-ICPC Best square approaching Algorithm Hi lbert matrix
  • 相关文献

参考文献5

二级参考文献38

  • 1黎雄,张学智.FIR数字滤波器的最优化设计及MATLAB实现[J].信息技术,2004,28(10):38-41. 被引量:11
  • 2孙晓军.线性相位FIR滤波器的整系数结构[J].黑龙江大学自然科学学报,1995,12(1):82-84. 被引量:1
  • 3赵小飞,岳芬芳.激励器中数字滤波器的设计[J].通信与广播电视,2005(3):12-17. 被引量:1
  • 4DickeyD,Fuller W. Distribution of the estimators for autoregressive time series with a unit root[ J]. Journal of the American Statistical Association, 1979(74) :427 -431.
  • 5Phillips P C B. Time Series Regression with a Unit Root [ J ]. Econometirca, 1987(55) : 277 - 301.
  • 6Phillips P B C. Testing for a unit root in time series regression[J]. Biometrika, 1988(75) : 335 - 346.
  • 7Leybourne S, Kim T H, Newbold P. Examination of Some More Powerful Modifications of the Dickey-Fuller Test [ J ]. Journal Applied Econometrics, 2005 (26) : 355 - 369.
  • 8Cushman D. Real exchange rates may have nonlinear trends [J]. Journal of Time Series Analysis, 2008 (22) : 595 - 612.
  • 9Nelson C R, Plosser C. Trends and random walks in macroeconomic time series: some evidence and implications [ J ]. Journal of Monetary Economics, 1982(10) : 139 - 162.
  • 10Perron P. The great crash, the oil price shock, and the unit root hypothesis[J]. Econometrica, 1989(57): 1361- 1401.

共引文献10

同被引文献25

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部