摘要
提出了一种用于倒车辅助系统的基于改进Hough变换的车位线识别方法。算法首先采用局部像素分布特征以剔除非直线的干扰像素,然后使用像素直方图自适应地选择与车位线边缘直线相适宜的梯度方向区间,减少参与Hough变换的像素点数的同时减少背景干扰直线边缘的影响,最后通过判断相邻边缘间的像素灰度关系,进一步确认车位线边缘,从而识别出图像中的车位线。相比于传统hough变换和基于梯度方向区间的改进随机Hough变换(Grad-RHT),本文算法在保持与Grad-RHT运行效率相当的情况下,在各种干扰背景下都取得了更好的车位线边缘直线检测正确率,表现出较好的识别鲁棒性。
A new method based on improved Hough transform is proposed. Firstly, the local pixel distribution is used to eliminate the influence of outliers. Then, the suitable interval of the linear gradient to the edge of the parking line is adaptively selected based on the pixel histogram. Finally, the selected lines are identified by judging the gray relation,and thus the parking slot marking can be recognized. Compared with the traditional Hough transform and the improved random Hough transform based on the gradient direction region (Grad-RHT),the proposed algorithm achieved a better recognition results and robustness under all kinds of interference background keeping the running efficiency of Grad-RHT.
出处
《测绘通报》
CSCD
北大核心
2017年第7期34-38,共5页
Bulletin of Surveying and Mapping
基金
贵州省教育厅重点项目(黔教合KY字[2015]403)
关键词
车位线识别
HOUGH变换
局部像素分布
梯度方向区间
灰度变化
parking slot marking recognition
Hough transform
local pixel distribution
gradient direction interval
gray variation