期刊文献+

分布式增量机制下的交通流大数据聚类分析 被引量:5

Traffic Flow Big Data Clustering Analysis Method Based on Distributed Incremental Mechanism
下载PDF
导出
摘要 时空聚类分析是对时空大数据进行利用的一种有效手段。本文提出了一种分布式增量大数据聚类分析方法,利用分布增量机制不但可以减少重复计算和迁移拷贝次数,而且可以持续对聚类结果进行修正,能够在保持聚类准确性的条件下提升整体运算效率。而聚类算法本身通过数据聚集趋势预分析、聚类算法和结果评价3个步骤,构建了一体化时空邻域,在时间和空间维度保证了聚类结果的准确性。经过试验证明该方法可以实现时空大数据的快速高效信息挖掘。 Spatio-temporal clustering analysis is an effective way of using spatio-temporal big data. This paper proposes a distributed incremental big data clustering analysis method. The incremental distribution mechanism can not only reduce the repeated calculation and the number of copies, but also can modify the clustering results continuously. And it is able to improve the operational efficiency under the condition of keeping in clustering accuracy. The clustering algorithm includes three steps:data aggregation trend analysis, clustering algorithm and result evaluation. It constructs an integrated spatio-temporal neighborhood, which guarantees the accuracy of clustering results in time and space. The experiments show that this method can realize the fast and efficient information mining of spatio-temporal big-data.
作者 李欣
出处 《测绘通报》 CSCD 北大核心 2017年第7期61-65,共5页 Bulletin of Surveying and Mapping
基金 国家自然科学基金(41501178) 河南财经政法大学博士科研启动基金(800257)
关键词 时空数据 大数据 聚类分析 增量聚类 时空邻域 spatio-temporal data big data cluster analysis incremental clustering spatio-temporal neighborhood
  • 相关文献

参考文献4

二级参考文献21

  • 1Han JW, Kamber M. Data Mining: Concepts and Techniques. 2nd ed., San Francisco: Morgan Kaufmann Publishers, 2001. 223-250.
  • 2Ester M, Kriegel HP, Sander J, Xu XW. A density-based algorithm for discovering clusters in large spatial database with noise. In: Simoudis E, Han J, Fayyad UM, eds. Proc. of the 2nd Int'l Conf. on Knowledge Discovery and Data Mining. Portland: AAAI Press, 1996. 226-231.
  • 3Zhang T, Ramakrishnan R, Linvy M. BIRCH: An efficient data clustering method for very large databases. In: Jagadish HV, Mumick IS, eds. Proc. of the ACM SIGMOD Int'l Conf. on Management of Data. Montreal: ACM Press, 1996. 103-114.
  • 4Guha S, RastogiR, Shim K. CURE: An efficient clustering algorithm for large databases. In: Haas LM, Tiwary A, eds. Proc. of the ACM SIGMOD Int'l Conf. on Management of Data. New York: ACM Press, 1998. 73-84.
  • 5Ankerst M, Breuning M, Kriegel HP, Sander J. OPTICS: Ordering points to identify the clustering structure. In: Delis A, Faloutsos C, Ghandeharizadeh S, eds. Proc. of the ACM SIGMOD Int'l Conf. on Management of Data. Philadelphia: ACM Press, 1999. 49-60.
  • 6Karypis G, Han EH, Kumar V. CHAMELEON: A hierarchical clustering algorithm using dynamic modeling. Computer, 1999,32(8): 68-75.
  • 7Hand DJ, Vinciotti V. Choosing k for two-class nearest neighbour classifiers with unbalanced classes. Pattern Recognition Letters, 2003,24(9): 1555-1562.
  • 8Stonebraker M, Frew J, Gardels K, Meredith J. The SEQUOIA 2000 storage benchmark. In: Buneman P, ed. Proc. of the ACM SIGMOD Int'l Conf. on Management of Data. Washington: ACM Press, 1993.2-11.
  • 9Aghabozorgi, Saeed,Saybani, Mahmoud Reza,Wah, Teh Ying.Incremental clustering of time-series by fuzzy clustering[].Journal of Information Science and Engineering.2012
  • 10Lu-An Tang,Yu Zheng,Jing Yuan,Jiawei Han.On Discovery of Traveling Companionsfrom Streaming Trajectories[].ICDE.2012

共引文献209

同被引文献68

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部