期刊文献+

控制力矩陀螺驱动空间机器人的角动量平衡控制 被引量:4

Momentum equalization control of space robot with control moment gyroscopes for joint actuation
下载PDF
导出
摘要 针对V构型控制力矩陀螺(CMGs)驱动的冗余空间机器人的CMGs角动量饱和问题,提出一种角动量平衡控制方法。该方法从平衡使用机械臂各臂杆CMGs角动量的思想出发,定义了角动量平衡指标,并使用加速度分解技术和逆动力学方法设计了角动量平衡控制器。该控制器可在保证机械臂跟踪工作空间轨迹的同时,利用机械臂的空转运动使得角动量平衡指标尽量减小,即各臂CMGs的角动量使用趋于平均,从而降低某些臂杆的CMGs先行饱和的可能性,充分利用CMGs的控制能力。基于平面三自由度冗余机械臂的数值仿真结果验证了所设计的控制器的有效性。 An angular momentum equalization control method was proposed for redundant space robot with scissored-pair control moment gyroscopes (CMGs) for joint actuation, This method utilizes the space ro- bot' s extra degrees of freedom to equalize momentum usage among arm links, thus achieving CMGs' simulta- neous saturation and better trajectory tracking ability. A momentum equalization index was defined following the idea of equal momentum usage to achieve simultaneous CMGs saturation. A control technique was devel- oped based on acceleration-level redundancy resolution and inverse dynamics control, with precious operational space tracking ability and momentum equalization index local minimization functionality, The local minimiza- tion of momentum equalization index serves as a means to use angular momenta as equally as possible, which decreases the possibility of non- simultaneous saturation and takes full advantage of the CMGs' angular momen- tum capacity. A planar three degree-of-freedom redundant manipulator was used in numerical simulation to verify the effectiveness of the control technique.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2017年第6期1191-1198,共8页 Journal of Beijing University of Aeronautics and Astronautics
基金 国家自然科学基金(11272027)~~
关键词 空间应用 机器人 陀螺 冗余机械臂 角动量 优化 space application robot gyroscopes redundant manipulator angular momentum optimization
  • 相关文献

参考文献3

二级参考文献39

  • 1李晶,李明瑞,黄文彬.刚柔耦合约束多体系统的动力分析[J].力学学报,1994,26(3):333-340. 被引量:5
  • 2Rosenthal DE. An order n formulation for robotic systems. Journal of Astronautical Sciences, 1990, 38(4): 511-529.
  • 3Banerjee AK. Block-diagonal equations for multibody elastodynamics with geometric Stiffness and Constraints. Journal of Guidance, Control, and Dynamics, 1993, 16(6): 1092-1100.
  • 4Pradhan S, Modi V J, Misra AK. Order-N formulation for flexible multibody systems in tree topology: Lagrangian approach. Journal of Guidance, Control, and Dynamics, 1997, 20(4): 665-672.
  • 5Banerjee AK, Lemak ME. Recursive algorithm with effi- cient variables for flexible multibody dynamics with mul- tiloop constraintsp. Journal of Guidance, Control, and Dynamics, 2007, 30(3): 780-790.
  • 6Rosenthal DE, Sherman MA. High performance multibody simulations via symbolic equation manipulation and Kane's method. Journal of the Astronautical Sciences, 1986, 34(3): 223-239.
  • 7Richard M J, McPhee J J, Anderson RJ. Computerized generation of motion equations using variational graph- theoretic methods. Applied Mathematics and Computa- tion, 2007, 192(1): 135-156.
  • 8Kurz T, Eberhard P, Henninger C, et al. From Neweul to Neweul-M2: symbolical equations of motion for multibody system analysis and synthesis. Multibody System Dynam- ics, 2010, 24:25-41.
  • 9Orlandea N, Chace MA, Calahan DA. Sparsity-oriented ap- proach to the dynamics analysis and design of mechanical systems-- parts 1& 2. Journal of Engineering for Indus- try, 1977, 99(3): 773-784.
  • 10Singh RP, Vander Voort R J, Likins PW. Dynamics of flexi- ble bodies in tree topology: a computer-oriented approach. Journal of Guidance, Control, and Dynamics, 1985, 8(5): 584-590.

共引文献17

同被引文献22

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部