期刊文献+

熔盐法制备氮掺杂多孔炭及其催化脱硫性能(英文) 被引量:2

Facile Preparation of Nitrogen-doped Porous Carbons via Salt Melt Synthesis with Efficient Catalytic Desulfurization Performance
下载PDF
导出
摘要 采用熔融盐合成技术,以生物质葡萄糖和富氮三聚氰胺为前驱体,成功制备得到具有发达孔隙结构(BET表面积:1355 m^2/g)和极高氮掺杂量(20.73wt%)的氮掺杂多孔炭材料。X射线光电子能谱(XPS)分析表明,多孔炭材料中的氮原子主要以吡咯及吡啶构型存在,这两种形态的氮原子有利于硫化氢的吸附及催化氧化。在常温、常压下,所制备氮掺杂多孔炭对硫化氢非金属催化转化为单质硫的脱除硫容高达1.10 g/g。该合成方法简便易行,有望实现氮掺杂多孔炭材料的批量和廉价制备,合成的氮掺杂多孔炭在污染物控制领域应用潜能巨大。 A series of N-doped porous carbons were prepared using biomass D-glucose and nitrogen-rich melamine as precursors via facile salt melt synthesis method. The obtained N-doped porous carbons exhibit developed porosity(BET surface area up to 1355 m^2/g) and notablely high nitrogen content(20.73wt%). X-ray photoelectron spectroscope(XPS) results indicate that the nitrogen configurations in the carbons are mainly pyrrolic and pyridinic functional groups, which are in favor of catalytic oxidation of hydrogen sulfide to elemental sulfur. High sulfur capacity of 1.10 g/g is achieved over the optimized carbon materials at room temperature and ambient pressure, showing the excellent adsorptive-catalytic performance of N-doped porous carbons for hydrogen sulfide removal. The facile synthesis route enables a great potential for the scale-preparation of N-doped porous carbons and application in pollution control.
作者 余正发 王旭珍 侯亚男 赵宗彬 李芮 邱介山 YU Zheng-Fa WANG Xu-Zhen HOU Ya-Nan ZHAO Zong-Bin Rui Li QIU Jie-Shan(State Key Lab of Fine Chemicals, Key Lab for Energy Materials and Chemical Engineering of Liaoning Province, School of Chem- istry, Faculty of Chemical, Environmental and Biological Science and Technology Engineering, Dalian University of Technology, Dalian 116024, China)
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2017年第7期770-776,共7页 Journal of Inorganic Materials
基金 National Natural Science Foundation of China(21176043,U1610105,U1610255)
关键词 氮掺杂多孔炭 熔融盐合成技术 硫化氢 非金属催化 nitrogen-doped porous carbon salt melt synthesis hydrogen sulfide metal free catalytic oxidation
  • 相关文献

参考文献2

二级参考文献19

  • 1Ayala P, Arenal R, Rümmeli M, et al. The doping of carbon nanotubes with nitrogen and their potential applications. Carbon, 2010, 48(3): 575-586.
  • 2Terrones M, Jorio A, Endo M, et al. New direction in nanotube science. Mater. Today, 2004, 7(10): 30-45.
  • 3Terrones M, Redlich P, Grobert N, et al. Carbon nitride nanocomposites: formation of aligned CxNy nanofibers. Adv. Mater., 1999, 11(8): 655-658. 3.0.CO;2-6 target="_blank">.
  • 4Glerup M, Steinmetz J, Samaille D, et al. Synthesis of N-doped SWNT using the arc-discharge procedure. Chem. Phys. Lett., 2004, 387(1/2/3): 193-197.
  • 5Tang C C, Golberg D, Bando Y, et al. Synthesis and field emission of carbon nanotubular fibers doped with high nitrogen content. Chem. Commun., 2003(24): 3050-3051.
  • 6Lu Y, Zhu Z P, Liu Z Y. Catalytic growth of carbon nanotubes through CHNO explosive detonation. Carbon, 2004, 42(2): 361-370.
  • 7Zhu Z P, Lu Y, Qiao D H, et al. Self-catalytic behavior of carbon naotubes. J. Am. Chem. Soc., 2005, 127(45): 15698-15699.
  • 8Trasobares S, Stephan O, Colliex C, et al. Compartmentalized CNx nanotubes: chemistry, morphology, and growth. J. Chem. Phys., 2002, 116(20): 8966-8972.
  • 9Ghosh K, Kumar M, Maruyama T, et al. Micro-structural, electron-spectroscopic and field-emission studies of carbon nitride nanotubes grown from cage-like and linear carbon sources. Carbon, 2009, 47(6): 1565-1575.
  • 10Sun C L, Wang H W, Hayashi M, et al. Atomic-scale deformation in N-doped carbon nanotubes. J. Am. Chem. Soc., 2006, 128(26): 8368-8369.

共引文献7

同被引文献17

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部