期刊文献+

Morphology Evolution of Polystyrene-core/Poly(N-isopropylacrylamide)-shell Microgel Synthesized by One-pot Polymerization 被引量:1

Morphology Evolution of Polystyrene-core/Poly(N-isopropylacrylamide)-shell Microgel Synthesized by One-pot Polymerization
原文传递
导出
摘要 One-pot polymerization with macroinitiator is supposed to be a robust, facile way to synthesize well-defined core- shell nanoparticles with fixed shell thickness. To testify this, we investigated the temperature-depending morphology evolution of polystyrene (PS) core/poly(N-isopropylacrylamide) (PNIPAM) shell microgel synthesized by one-pot polymerization with PNIPAM-RAFT as macroinitiator in dimethylformamide (DMF) by transmission electron microscopy (TEM), dynamic/static light scattering (DLS/SLS) and small angle neutron scattering (SANS). It is revealed that the microgel has a core-shell structure, i.e., the core is made of pure PS, but the shell is composed of both PNIPAM-RAFT macroinitiator and crosslinked PS. In fact, there are 92.0 wt% D20, 6.7 wt% PNIPAM and 1.3 wt% PS in the shell in its aqueous dispersion at 21 ℃; therefore, its shell thickness is much larger than the extended chain length of the macroinitiator as revealed by both SANS and DLS observations. Competitive growth of styrene, divinylbenzene and PNIPAM macroinitiator as well as possible chain transfer from amine proton of PNIPAM side chain may lead to the larger shell thickness, compared with the extended chain length of the macroinitiator. Our work can shed light on the real morphology control in one-pot polymerization. One-pot polymerization with macroinitiator is supposed to be a robust, facile way to synthesize well-defined core- shell nanoparticles with fixed shell thickness. To testify this, we investigated the temperature-depending morphology evolution of polystyrene (PS) core/poly(N-isopropylacrylamide) (PNIPAM) shell microgel synthesized by one-pot polymerization with PNIPAM-RAFT as macroinitiator in dimethylformamide (DMF) by transmission electron microscopy (TEM), dynamic/static light scattering (DLS/SLS) and small angle neutron scattering (SANS). It is revealed that the microgel has a core-shell structure, i.e., the core is made of pure PS, but the shell is composed of both PNIPAM-RAFT macroinitiator and crosslinked PS. In fact, there are 92.0 wt% D20, 6.7 wt% PNIPAM and 1.3 wt% PS in the shell in its aqueous dispersion at 21 ℃; therefore, its shell thickness is much larger than the extended chain length of the macroinitiator as revealed by both SANS and DLS observations. Competitive growth of styrene, divinylbenzene and PNIPAM macroinitiator as well as possible chain transfer from amine proton of PNIPAM side chain may lead to the larger shell thickness, compared with the extended chain length of the macroinitiator. Our work can shed light on the real morphology control in one-pot polymerization.
出处 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2017年第9期1156-1164,共9页 高分子科学(英文版)
基金 This work was financially supported by the National Natural Science Foundation of China(Nos.21474119 and 21674020)
关键词 ONE-POT PS-core/PNIPAM-shell TEM DLS SANS One-pot PS-core/PNIPAM-shell TEM DLS SANS
  • 相关文献

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部