期刊文献+

Integration of SEM/WDX elemental mapping and micromorphology to determine mineralogical traits of peat soils(case study:Northern Iran) 被引量:1

Integration of SEM/WDX elemental mapping and micromorphology to determine mineralogical traits of peat soils(case study:Northern Iran)
下载PDF
导出
摘要 We explored the potential use of combining wavelength-dispersive X-ray spectroscopy(WDX) and micromorphology of thin sections to identify minerals in peat soils. Peat soil minerals from three peats and swamps across Golestan Province in northern Iran were first characterized by micromorphological studies. Soils were composed mainly of quartz, muscovite, biotite, pyroxene,sericitized Fe-nodules, and iron-rich garnet. In addition,micromorphological results indicated that Galougah Coastal Swamp sections contained some inorganic residue with biological origin including oyster and limpet, which may be related to the swamp's location near Gorgan Gulf.In order to determine mineralogical properties of samples,twelve unknown grains were chosen for elemental concentration map studies. Quartz, garnet, ilmenite, calcite,and pyroxene in Suteh samples; epidote and Fe-nodule in Ghaleh-Ghafeh Peat Swamp; and barite, phyllosilicates,and calcite in Galougah were identified by WDX mapping of Si, Al, Fe, Ca, Mg, C, Ba, S, and Ti. Composition of the oysters' body was also analyzed by WDX for Si, Ca, Fe,and C. The results indicated that most of the minerals in all sections likely formed through weathering, inheriting their composition from the parent rock. This research suggests that merging micromorphology and SEM/WDX image techniques can be useful in confirming the presence of mineral particles in soil science. We explored the potential use of combining wavelength-dispersive X-ray spectroscopy(WDX) and micromorphology of thin sections to identify minerals in peat soils. Peat soil minerals from three peats and swamps across Golestan Province in northern Iran were first characterized by micromorphological studies. Soils were composed mainly of quartz, muscovite, biotite, pyroxene,sericitized Fe-nodules, and iron-rich garnet. In addition,micromorphological results indicated that Galougah Coastal Swamp sections contained some inorganic residue with biological origin including oyster and limpet, which may be related to the swamp's location near Gorgan Gulf.In order to determine mineralogical properties of samples,twelve unknown grains were chosen for elemental concentration map studies. Quartz, garnet, ilmenite, calcite,and pyroxene in Suteh samples; epidote and Fe-nodule in Ghaleh-Ghafeh Peat Swamp; and barite, phyllosilicates,and calcite in Galougah were identified by WDX mapping of Si, Al, Fe, Ca, Mg, C, Ba, S, and Ti. Composition of the oysters' body was also analyzed by WDX for Si, Ca, Fe,and C. The results indicated that most of the minerals in all sections likely formed through weathering, inheriting their composition from the parent rock. This research suggests that merging micromorphology and SEM/WDX image techniques can be useful in confirming the presence of mineral particles in soil science.
出处 《Acta Geochimica》 EI CAS CSCD 2017年第2期298-315,共18页 地球化学学报(英文)
关键词 矿物学特征 土壤科学 形态测定 元素浓度 泥炭土 扫描电镜 伊朗 映射 Elemental mapping Micromorphology Mineralogical characterization Peat and swamp soil SEM/WDX
  • 相关文献

同被引文献25

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部