摘要
The Yao'an Pb–Ag deposit, located in the Chuxiong Basin, western Yangtze Block, is an important component of the Jinshajiang–Ailaoshan alkaline porphyry–related polymetallic intrusive belt. This complex suite of rock bodies includes a vein of pseudoleucite porphyry within deposits of syenite porphyry and trachyte.The pseudoleucite is characterized by a variable greyish,greyish-white, and greyish-green porphyritic texture. Phenocrysts are mainly pseudoleucite with small amounts of alkali feldspar and biotite. In an intense event, leucite phenocrysts altered to orthoclase, kaolinite, and quartz.Both the pseudoleucite porphyry and the syenite porphyry samples were typical alkali-rich, K-rich, al-rich rocks with high LaN/YbNratios; enriched in light rare earth elements and large-ion lithophile elements, and depleted in high field strength elements; and with strongly negative Ta, Nb, and Ti(TNT) anomalies and slightly negative Eu anomalies—all characteristics of subduction-zone mantle-derived rock.We obtained a LA-ICP-MS zircon U–Pb age of 34.1 ± 0.3 Ma(MSWD = 2.4), which is younger than the established age of the Indian and Eurasian Plate collision.The magma derived from a Type-II enriched mantle formed in a post-collisional plate tectonic setting. The geochemical characteristics of the Yao'an pseudoleucite porphyry are powerful evidence that the porphyry'sdevelopment was closely linked to the Jinshajiang–Ailaoshan fault and to the Indian-Eurasian collision.
The Yao'an Pb–Ag deposit, located in the Chuxiong Basin, western Yangtze Block, is an important component of the Jinshajiang–Ailaoshan alkaline porphyry–related polymetallic intrusive belt. This complex suite of rock bodies includes a vein of pseudoleucite porphyry within deposits of syenite porphyry and trachyte.The pseudoleucite is characterized by a variable greyish,greyish-white, and greyish-green porphyritic texture. Phenocrysts are mainly pseudoleucite with small amounts of alkali feldspar and biotite. In an intense event, leucite phenocrysts altered to orthoclase, kaolinite, and quartz.Both the pseudoleucite porphyry and the syenite porphyry samples were typical alkali-rich, K-rich, al-rich rocks with high LaN/YbNratios; enriched in light rare earth elements and large-ion lithophile elements, and depleted in high field strength elements; and with strongly negative Ta, Nb, and Ti(TNT) anomalies and slightly negative Eu anomalies—all characteristics of subduction-zone mantle-derived rock.We obtained a LA-ICP-MS zircon U–Pb age of 34.1 ± 0.3 Ma(MSWD = 2.4), which is younger than the established age of the Indian and Eurasian Plate collision.The magma derived from a Type-II enriched mantle formed in a post-collisional plate tectonic setting. The geochemical characteristics of the Yao'an pseudoleucite porphyry are powerful evidence that the porphyry'sdevelopment was closely linked to the Jinshajiang–Ailaoshan fault and to the Indian-Eurasian collision.
基金
funded by National Natural Science Foundation of China (Grant Number:41102049)
Mineral Resources Prediction and Evaluation Engineering Laboratory of Yunnan Province
the Program of Provincial and University Innovation Team