期刊文献+

An H^m-conforming spectral element method on multi-dimensional domain and its application to transmission eigenvalues 被引量:3

An H^m-conforming spectral element method on multi-dimensional domain and its application to transmission eigenvalues
原文传递
导出
摘要 We develop an Hm-conforming(m 1) spectral element method on multi-dimensional domain associated with the partition into multi-dimensional rectangles. We construct a set of basis functions on the interval [-1, 1] that are made up of the generalized Jacobi polynomials(GJPs) and the nodal basis functions.So the basis functions on multi-dimensional rectangles consist of the tensorial product of the basis functions on the interval [-1, 1]. Then we construct the spectral element interpolation operator and prove the associated interpolation error estimates. Finally, we apply the H2-conforming spectral element method to the Helmholtz transmission eigenvalues that is a hot problem in the field of engineering and mathematics. We develop an H^m-conforming(m≥ 1) spectral element method on multi-dimensional domain associated with the partition into multi-dimensional rectangles. We construct a set of basis functions on the interval [-1, 1] that are made up of the generalized Jacobi polynomials(GJPs) and the nodal basis functions.So the basis functions on multi-dimensional rectangles consist of the tensorial product of the basis functions on the interval [-1, 1]. Then we construct the spectral element interpolation operator and prove the associated interpolation error estimates. Finally, we apply the H2-conforming spectral element method to the Helmholtz transmission eigenvalues that is a hot problem in the field of engineering and mathematics.
出处 《Science China Mathematics》 SCIE CSCD 2017年第8期1529-1542,共14页 中国科学:数学(英文版)
基金 supported by the Educational Innovation Program of Guizhou Province for Graduate Students (Grant No. KYJJ[2016]01) National Natural Science Foundation of China (Grant No. 11561014)
关键词 spectral element method multi-dimensional domain interpolation error estimates transmission eigenvalues 谱元法 多维 小时 应用 特征值 矩形基础 传输 雅可比多项式
  • 相关文献

参考文献2

二级参考文献55

  • 1Bendali A, Boubendir Y, Zerbib N. Localized adaptive radiation condition for couping boundry with finite element methods applied to wave propagation probelms. IMA J Numer Anal, 2013, doi: 10]1093/imanum/drt038.
  • 2Cakoni F, Colton D. Qualitative Method in Inverse Scattering Theory. Berlin: Springer, 2006.
  • 3Cakoni F, Colton D, Hadder H. On the determination of Dirichlet and transmission eigenvalues from far field data. J Int Eqns Appl, 2009, 21: 203–227
  • 4Cakoni F, Colton D, Haddar H. The interior transmission problem for regions with cavities. SIAM J Anal, 2010, 42: 145–162.
  • 5Cakoni F, Colton D, Haddar H. The interior transmission eigenvalue prolem for absoring media. Inverse Probelms, 2012, 28: 045005.
  • 6Cakoni F, Gintides D, Haddar H. The existence of an infinite discrete set of transmission eigenvalues. SIAM J Anal, 2010, 42: 237–255.
  • 7Cakoni F, Hadder H. On the existence of transmission eigenvalues in an inhomogeneous medium. Appl Anal, 2009, 88: 475–493.
  • 8Cakoni F, Haddar H. Transmission eigenvalues in inverse scatering theory. Inside Out II, 2012, 60: 527–578.
  • 9Colton D, Monk P. The inverse scattering problem for time-harmonic acoustic waves in a penetrable medium. Quart J Mech Appl , 1987, 40: 189–212.
  • 10Colton D, Monk P. The inverse scattering problem for time-harmonic acoustic waves in an inhomogeneous medium. Quart J Mech Appl , 1988, 41: 97–125.

共引文献3

同被引文献2

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部