期刊文献+

基于移动数据的用户间影响力计算方法 被引量:3

Calculation method of influence between users based on mobile data
原文传递
导出
摘要 为了准确获取用户的需求,提出了一种基于移动数据的用户间影响力度量方法.首先,根据移动用户的交互行为构建社会网络,利用网络的拓扑结构和移动用户行为计算用户自身影响力.然后,根据用户自身影响力、用户间的交互行为和用户偏好相似度计算用户间影响力.计算基于用户交互行为的用户间影响力时,考虑了相应的上下文信息;计算基于用户偏好相似度的用户间影响力时,考虑了上下文信息以及用户偏好发生的先后顺序.最后,通过真实数据集与现有方法相比,得出本方法获取的用户间影响力的准确率更高. In order to accurately obtain the user requirement, a calculating method of influence be- tween users based on the mobile data was proposed. First, according to the exchange behavior of mo- bile user, the mobile social network was constructed, and the influence of user oneself was calculated according to the topology of the constructed mobile social network and mobile user behavior. Then, the influence between users was calculated according to the user oneself influence, exchange behavior and the similarity of user preference between users. When calculating the influence based on the ex- change behavior, the context information was considered. When calculating the influence based on the similarity of user preference, the context information and the order of user preference occurred were considered. Finally, the experiment was executed using the real data set. The results show the pro- posed method can obtain more accurate influence between users than the existing methods.
作者 史艳翠 杨巨成 陈亚瑞 王建 Shi Yancui Yang Jucheng Chen Yarui Wang Jian(College of Computer Science and Information Engineering, Tianjin University of Science and Technology, Tianjin 300222, China Three Gorges Asset Management Center, Beijing 100069, China)
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第7期110-114,共5页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(61402331 61402332 61502338 61272509)
关键词 移动数据 相似度 影响力 用户偏好 上下文 mobile data similarity influence user preference contextt
  • 相关文献

参考文献7

二级参考文献272

  • 1张宁,贾自艳,史忠植.使用KNN算法的文本分类[J].计算机工程,2005,31(8):171-172. 被引量:98
  • 2黄海清,张平,张曦文.基于用户偏好的智能业务选取研究[J].电子学报,2006,34(B12):2537-2540. 被引量:3
  • 3Semiocast , Twitter reaches half a billion accounts more than 140 million in the U. S [EB/OL]. (2012-07-30)[2013-07- 23]. http://semiocast. com/publications/2012_07 _30_ Twitter_ reaches_halCa_billion_accounts_140m_in_the_ US.
  • 4Kwak H, Lee C, Park H, et al. What is Twitter, A social network or a news media [C] //Proc of the 19th Int Conf on World Wide Web (WWW·10). New York: ACM, 2010: 591-600.
  • 5Comscore. Mobile driving majority of growth for leading EU5 social networks [EB/OLJ. (2012-05-18) [2013-07- 23]. http://www.comscoredatamine.com/2012/05/mobile_ driving , majority _ f _ growth _ for _ leading _ eu5 _ social _ networks.
  • 6Sakaki T, Okazaki M, Matsuo Y. Earthquake shakes Twitter users: Real-time event detection by social sensors [C] //Proc of the 19th Int Conf on World Wide Web (WWW·10). New York: ACM, 2010: 851-860.
  • 7Popescu A M. Pennacchiotti M. Detecting controversial events from Twitter [C] !!Proc of the 19th ACM Int Conf on Information and Knowledge Management (CIKM·10). New York: ACM. 2010: 1873-1876.
  • 8Weng J. Lee B S. Event detection in Twitter [C] //Proc of the 5th Int AAAI Conf on Weblogs and Social Media (ICWSM'l1). Menlo Park. CA: AAAI. 2011: 401-408.
  • 9Becker H, Naaman M, Gravano L. Beyond trending topics: Real-world event identification on Twitter [C] //Proc of the 5th Int AAAI Conf on Weblogs and Social Media (lCWSM'l1). Menlo Park. CA: AAAI. 2011: 438-441.
  • 10Ritter A, Mausam B. Etzioni O. et al. Open domain event extraction from Twitter [C] //Proc of the 18th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining (KDD'12). New York: ACM. 2012: 1104-1112.

共引文献386

同被引文献24

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部