期刊文献+

基于任务特征的云计算资源分配策略 被引量:1

Resource Allocation Strategy in Cloud Computing Based on Task Characteristics
下载PDF
导出
摘要 云计算中存在大量的服务资源,高效利用这些资源是资源分配的主要任务。通过对任务流的资源占用和执行过程建模分析,掌握任务流特性,提出伙伴关系任务流资源分配方案。多任务流执行过程中出现资源需求增减的时间同步,这种现象持续不断将产生波动共振,本文采用资源申请-仲裁机制来解决这一问题,把共振的任务流转变为伙伴关系任务流来协作使用资源,保持资源的高效利用。实验结果表明,本文算法消耗的资源比静态方式要少,溢出数也要少,实现了资源的充分利用,验证了算法的正确性。 There are a lot of resources in cloud computing. Efficient use of resources is a main challenge of resource allocation in cloud computing. Based on task flow modeling, the resource occupation and task flow execution are analyzed, and the characteris- tics of the flow are mastered. A resource allocation scheme on partnership task flow is given. In the process of multi-task flow, the demand of resources may increase or decrease at the same time, which will lead to the phenomenon of the wave resonance. The application-arbitration mechanism is proposed to solve this problem, in which the task flow is transformed into the partnership for using resources efficiently. Results show that the resource consumption and overflow of the algorithm are less than that of the static method. The correctness of the algorithm is verified.
出处 《计算机与现代化》 2017年第7期79-84,共6页 Computer and Modernization
基金 四川省教育厅科研基金资助项目(16ZB0412) 成都理工大学工程技术学院基金资助项目(C122015007)
关键词 云计算 任务特征 资源分配 共振 伙伴关系 cloud computing task characteristics resource allocation resonance partnership
  • 相关文献

参考文献10

二级参考文献192

  • 1孙瑞锋,赵政文.基于云计算的资源调度策略[J].航空计算技术,2010,40(3):103-105. 被引量:43
  • 2尹红军,李京,宋浒,李凌.云计算中运营商效益最优的资源分配机制[J].华中科技大学学报(自然科学版),2011,39(S1):51-55. 被引量:13
  • 3伍之昂,罗军舟,宋爱波.基于QoS的网格资源管理[J].软件学报,2006,17(11):2264-2276. 被引量:21
  • 4黄炳强,曹广益,王占全.强化学习原理、算法及应用[J].河北工业大学学报,2006,35(6):34-38. 被引量:19
  • 5VARIA J. Cloud architectures - Amazon Web services [ EB/OL]. [ 2009 - 03 - 01 ]. http://acmbangalore, org/events/monthly-talk/ may-2008 --cloud-architectures---amazon-web-services. html.
  • 6BRYANT R E. Data-intensive supercomputing: The case for DISC, CMU-CS-07-128 [ R]. Pittsburgh, PA, USA: Carnegie Mellon University, Department of Computer Science, 2007.
  • 7SZALAY A S, KUNSZT P, THAKAR A, et al. Designing and mining multi-terabyte astronomy archives: The sloan digital sky survey [ C]//Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. New York: ACM Press, 2000:451 - 462.
  • 8BARROSO L A, DEAN J, HOLZLE U. Web search for a planet: The Google cluster architecture [ J]. IEEE Micro, 2003, 23(2) : 22 -28.
  • 9GILES J. Google tops translation ranking [ EB/OL]. (2006 - 11 - 06) [ 2009 - 03 - 06 ]. http://www, nature, com/news/2006/ 061106/full/news061106-6. html.
  • 10维基百科.Cloud computing [ EB/OL]. [ 2009 - 03 - 10]. http://en. wikipedia, org/wiki/Cloud_computing.

共引文献1610

同被引文献14

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部