期刊文献+

基于改进Tri-Training算法的健康大数据分类模型研究 被引量:2

Research on Healthy Big Data Classification Model Based on Improved Tri-Training Algorithm
下载PDF
导出
摘要 Tri-Training是半监督协同训练的代表性算法之一,它运用统计技术标记置信度,并结合噪音学习理论进行无标记样本分类。当扩充样本训练集不满足噪音学习理论时,会进行随机采样,针对传统Tri-Training算法随机选取基础分类器的扩充训练样本集会引入噪声这一缺陷,通过更改扩充样本训练集选取方式,剔除可能提高分类误差的样本。在健康大数据集上进行一系列验证试验,实验结果表明,改进的算法优于原始算法,降低分类错误率。 Tri-Training is a represented algorithm for semi-supervised co-training, it uses statistical techniques to mark the confidence and combine the noise learning theory to classify the unmarked sample. When the extended sample training set does not satisfy the noise learning theory, random sampling is performed. In order to solve the disadvantages of the traditional Tri-Training algorithm which may introduce noise when select the extended sample training set, changes the method of selecting the extended training set, and removes the sample which would improve the classification errors. Carries out a series of verification experiments on the health data set. The experimental results show that the improved algorithm is superior to the original algorithm and reduces the error probability of classification.
出处 《现代计算机(中旬刊)》 2017年第7期21-25,共5页 Modern Computer
基金 广东省省级科技计划项目(No.2014A090906004)
关键词 Tri—Training 协同训练 分类误差 噪声样本 Tri-Training Co-Training Classification Error Noise Samples
  • 相关文献

参考文献4

二级参考文献87

  • 1蒋伟进,张莲梅,王璞.基于MAS协作机制的动态计算资源优化调度模型[J].中国科学(F辑:信息科学),2009,39(9):977-989. 被引量:6
  • 2于满泉,陈铁睿,许洪波.基于分块的网页信息解析器的研究与设计[J].计算机应用,2005,25(4):974-976. 被引量:55
  • 3吴洪,卢汉清,马颂德.基于内容图像检索中相关反馈技术的回顾[J].计算机学报,2005,28(12):1969-1979. 被引量:52
  • 4苏金树,张博锋,徐昕.基于机器学习的文本分类技术研究进展[J].软件学报,2006,17(9):1848-1859. 被引量:387
  • 5Chapelle O,Schoelkopf B,Zien A.Semi-Supervised Learning.Cambridge:MIT Press,2006
  • 6Nigam K,McCallum A K,Thrun S,Mitchell T.Text classification from labeled and unlabeled documents using EM.Machine Learning,2000,39(2-3):103-134
  • 7Miller D J,Browning J.A mixture model and EM-based algorithm for class discovery,robust classification,and outlier rejection in mixed labeled/unlabeled data sets.IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(11):1468-1483
  • 8Joachims T.Transductive inference for text classification using support vector machines//Proceedings of the 16th International Conference on Machine Learning.New York,USA,1999:200-209
  • 9Blum A,Lafferty J,Rwebangira M,Reddy R.Semi-super-vised learning using randomized mincuts//Proceedings of the 21st International Conference on Machine Learning.Texas,USA,2004:934-947
  • 10Zhu X J.Semi-supervised learning literature survey.University of Wisconsin,Wisconsin:Technical Report:TR1530,2006

共引文献23

同被引文献11

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部