期刊文献+

一些量子Borcherds超代数及其扩张(英文)

Some Quantized Borcherds Superalgebras and Their Extensions
原文传递
导出
摘要 设wU是一个关于Borcherds超代数o的弱量子包络代数,H是一个Hopf代数.在代数wU中增加H的类群元素b_(ik),c_(ik),g_(ik),h_(ik)(i∈I,k=1,2,…,m_i),定义了一个扩张超代数HwU,并证明它在一定条件下构成弱Hopf超代数.利用一个Ore集对代数HwU进行局部化,还得到了一个扩张量子包络代数. Let wU be a new weak quantized enveloping algebra associated to a Borcherds superalgebra G. Let H be a Hopf algebra. By further adding commutative group-like elements bik, cik, gik, hik (i ∈ I, k = 1, 2, … , mi) of a Hopf Mgebra H to the superalgebra wU, we define an extended superalgebra H × wU. It is a weak Hopf superalgebra under some conditions. We also obtain an extended quantized enveloping algebra by localizing H × wU with an Ore set.
出处 《数学进展》 CSCD 北大核心 2017年第4期570-582,共13页 Advances in Mathematics(China)
基金 supported by NSFC(No.11171296) the Foundation of Zhejiang Provincial Educational Committee(No.Y201327644,No.FX2014082) the Natural Science Foundation of Zhejiang Province(No.LQ13A010018,No.LZ14A010001,No.LY15A010002)
关键词 Borcherds超代数 量子包络代数 HOPF代数 扩张 Borcherds superalgebra quantized enveloping algebra Hopf algebra extension
  • 相关文献

参考文献4

二级参考文献62

  • 1Li, F.: Weak Hopf algebra and some new solutions of the quantum Yang-Baxter equation. J. Algebra, 208, 72-100 (1998).
  • 2Li, F., Duplij, S.: Weak Hopf algebras and singular solutions of quantum Yang-Baxter equation. Comm. Math. Phys., 225, 191-217 (2002).
  • 3Li, F.: On quasi-bicrossed product of Weak Hopf algebras. Acta Mathematica Sinica, English Series, 20(2), 305-318 (2004).
  • 4Li, F., Liu, G. X.: Weak tensor category and related generalzed Hopf algebras. Acta Mathematica Sinica, English Series, 22(4), 1027-1046 (2006).
  • 5Aizawa, N., Isaac, P. S.: Weak Hopf algebras corresponding to Uq[sln]. J. Math. Phys., 44, 5250-5267 (2003).
  • 6Yang, S. L.: Weak Hopf algebras corresponding to Cartan matrices. J. Math. Phys., 46, 073502-073520 (2005).
  • 7Jeong, K., Kang, S. J., Kashiwara, M.: Crystal bases for quantum generalized Kac-Moody algebras. Proc. London Math. Soc., (3), 90, 395-438 (2005).
  • 8Bankart, G., Kang, S. J., Melville, D.: Quantized enveloping algebras for Borcherds superalgebras. Transactions of the American Mathematical Society, 350(8), 3297-3319 (1998).
  • 9Kang, S. J.: Quantum Deformation of generalized Kac-Moody algebras and their modules. J. Algebra, 17'5, 1041-1066 (1995).
  • 10Jantzen, J. C.: Lectures on quantum group, American Mathematical Society. Providence, RI, 6, 60-70 (1995).

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部