摘要
设wU是一个关于Borcherds超代数o的弱量子包络代数,H是一个Hopf代数.在代数wU中增加H的类群元素b_(ik),c_(ik),g_(ik),h_(ik)(i∈I,k=1,2,…,m_i),定义了一个扩张超代数HwU,并证明它在一定条件下构成弱Hopf超代数.利用一个Ore集对代数HwU进行局部化,还得到了一个扩张量子包络代数.
Let wU be a new weak quantized enveloping algebra associated to a Borcherds superalgebra G. Let H be a Hopf algebra. By further adding commutative group-like elements bik, cik, gik, hik (i ∈ I, k = 1, 2, … , mi) of a Hopf Mgebra H to the superalgebra wU, we define an extended superalgebra H × wU. It is a weak Hopf superalgebra under some conditions. We also obtain an extended quantized enveloping algebra by localizing H × wU with an Ore set.
出处
《数学进展》
CSCD
北大核心
2017年第4期570-582,共13页
Advances in Mathematics(China)
基金
supported by NSFC(No.11171296)
the Foundation of Zhejiang Provincial Educational Committee(No.Y201327644,No.FX2014082)
the Natural Science Foundation of Zhejiang Province(No.LQ13A010018,No.LZ14A010001,No.LY15A010002)