摘要
本文主要研究带有零Dirichlet边界条件的p-Kirchhoff型方程(α+λ((∫_Ω(|▽u|~p+V(x)|u|~p)dx)~T)(-△_pu+V(x)|u|^(p-2)u)=f(x,u),x∈Ω解的存在性与多解性,其中Ω是R^N(N≥3)中的有界光滑区域,a,λ>0,τ>0,函数V.f连续且满足一定的条件.利用变分法,得到了该问题无穷多个非平凡解的存在性.
In this paper, we study the multiplicity of solutions for the following p-Kirchhoff equation with zero Dirichlet boundary condition, where ~ is a bounded domain with smooth boundary in RN (N ≥ 3), a, λ〉 0, τ〉 0, and V, f are continuous functions satisfying some conditions. By using the variational method, we get the existence of infinitely many nontrivial solutions for the previous equation.
出处
《数学进展》
CSCD
北大核心
2017年第4期590-598,共9页
Advances in Mathematics(China)
基金
supported by NSFC(No.11571093,No.11471164)
the NSF of Education Bureau of Anhui Province(No.KJ2017A432)