期刊文献+

基于二进制QPSO约简算法的入侵检测模型

Intrusion-Detection Model based on Binary QPSO Reduction Algorithm
下载PDF
导出
摘要 为了克服入侵检测系统存在着在先验知识较少情况下推广能力差的问题,提出了基于粗糙集理论的入侵检测方法。将基于断点重要性的算法应用于本模型的离散化中,将二进制量子粒子群算法(QPSO)应用于属性约简中加以仿真,并与基于辨识矩阵和遗传算法的属性约简方法进行比较,结果表明,基于二进制量子粒子群算法的约简方法约简时间短、检测率高,优于辨识矩阵和遗传算法。 In order to overcome poor generalizing ability of current intrusion detection system in case of less prior knowledge, the intrusion detection method based on rough set theory is proposed. The algorithm based on breakpoint importance is applied in the discretization of the model, and the binary QPSO(quantum particle swarm optimization) in the attribute reduction, its simulation and comparision with attribute reduction methods based on discernibility matrix and genetic algorithm indicate that the reduction method based on the binary quantum particle swarm algorithm has the advantages of shorter reduction time and higher detection rate, and is superior to the identification matrix and genetic algorithm.
出处 《通信技术》 2017年第7期1525-1529,共5页 Communications Technology
关键词 粗糙集 量子粒子群 属性约简 入侵检测 rough set quantum-behaved particle swarm attribute reduction intrusion detection
  • 相关文献

参考文献4

二级参考文献24

  • 1Forrest S,Perrelason A S,Allen L,et al.Self_nonself discrimination in a computer[C].In:Rushby J,Meadows C,eds.Proceedings of the 1994 IEEE Symposium on Research in Security and Privacy.Oakland,CA:IEEE Computer Society Press,1994:202-212.
  • 2Ghosh A K,Michael C,Schatz M.A real-time intrusion system based on learning program behavior[A].In:Debar H,Wu SF.Recent advances in intrusion detection (RAID 2000)[C].Toulouse:Spinger-Verlag,2000.93-109.
  • 3Lee W,Stolfo S J.A data mining framework for building intrusion detection model[C].In:Proceedings of the 1999 IEEE Symposium on Security and Privacy.Oakland,CA:IEEE Computer Society Press,1999:120-132.
  • 4刘清.Rough集及Rough推理[M].北京:科学出版社,2001..
  • 5Mukherjee B,Heberlein T L,Levitt K N. Network intrusion detection. IEEE Network,1994,8(3):26-41
  • 6Lee W,Stolfo S J, Mok K. Data mining in workflow environments: Experiences in intrusion detection. In:Proc. of the 1999Conf. on Knowledge Discovery and Data Mining (KDD99), 1999
  • 7Forrest S,Perelson A S,Allen L. Self-nonself discrimination in a computer. In:Proc. of the 1994 IEEE Symposium on Research in Security an Privacy, 1994
  • 8Lane T,Brodley C E. Detecting the Abnoraml: Matchine Learning in Computer Security:[Technical Report ECE-97-1]. 1997
  • 9Bazan J G,Skowron A,Synak P. Dynamic reducts as a tool for extracting laws from decision tables. In:Proc. Intl. Symposium on Methodologies for Intelligent Systems, volume 869 of LectureNotes in Artificial Intelligence,Springer-Verlag, 1994. 346~355
  • 10Li Renpu,Wang Zheng-ou. Mining classification rules using rough sets and neural networks. European Journal of Operational Research ,Sept. 2003

共引文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部