摘要
文章以车门关键部件厚度为变量,采用拉丁超立方试验设计方法生成20个样本点进行计算,建立了下沉量、凹陷量、一阶模态频率、质量的Kriging模型。其中,凹陷量模型误差较大,引入抗凹刚度进行替代。为了保证合适的质量和模态频率,适当协调车门下沉量和抗凹刚度的要求,并以此为约束,以模态频率最高与质量最轻为优化目标,求得最优解。
Taking the thickness of key parts of car door as variable, 20 sample points are produced and tested by using I.atin hypercube method. The Kriging model with the sinking displacement, dent de- formation, first modal frequency and mass is established. The dent resistance of the door is imported to reduce the model errors. The requirement of sinking and dent resistant performance is compromised in order to fit the mass and modal frequency. Taking this as a constraint, an optimal solution of maxi- mum modal frequency and minimum mass is obtained.
出处
《合肥工业大学学报(自然科学版)》
CAS
北大核心
2017年第7期888-891,共4页
Journal of Hefei University of Technology:Natural Science
基金
合肥工业大学产学研校企合作资助项目(W2014JSKF0445)