期刊文献+

基于二进制量子行为粒子群优化的WSN自适应设计

Design of Wireless Sensor Networks Based on Binary Quantum-behaved Particle Swarm Optimization
下载PDF
导出
摘要 无线传感器网络(WSN)所处的物理环境,探测对象以及WSN本身都存在很多不确定的因素,这要求WSN能够适时地调整和优化。提出一种基于簇结构的自适应WSN,采用二进制量子行为粒子群算法实现网络拓扑控制优化与网络覆盖优化,提高了全局搜索能力。算法中采用基于并行位操作的高效率算子处理二进制串。该算法融合于WSN动态结构设计,能有效延长WSN的使用寿命。 There are many uncertain factors in physical environment, detecting targets and wireless sensor networks themselves. Wireless sensor networks application required duly adjusting and optimizing. It presents an adaptive cluster structure, and uses bi- nary quantum - behaved particle swarm optimization for network topology controlling and network coverage optimization. Efficient bi- nary series processing operators are designed based on parallel bit operation. This method prolongs network service life effectively.
出处 《黑龙江工业学院学报(综合版)》 2017年第7期48-53,共6页 Journal of Heilongjiang University of Technology(Comprehensive Edition)
基金 国家自然科学基金资助项目(No.61300170 61572033) 安徽省高校自然科学研究重大项目(No.KJ2015ZD08) 安徽省高等教育提升计划项目(No.TSKJ2015B14) 安徽工程大学2016年校级本科教学质量提升计划项目(No.2016jyxm27)
关键词 无线传感器网络 粒子群优化 量子 自适应设计 节能 wireless sensor networks particle swarm optimization quantum adaptive design energy conservation
  • 相关文献

参考文献3

二级参考文献42

  • 1闻朝中,李智.粒子群算法在配电网络无功补偿优化中的应用[J].武汉工业学院学报,2004,23(1):18-21. 被引量:39
  • 2朱庆保,张玉兰.基于栅格法的机器人路径规划蚁群算法[J].机器人,2005,27(2):132-136. 被引量:123
  • 3倪庆剑,邢汉承,张志政,王蓁蓁,文巨峰.粒子群优化算法研究进展[J].模式识别与人工智能,2007,20(3):349-357. 被引量:70
  • 4Kennedy J, Eberhart R. C. Particle swarm optimization [C]// Proceedings of IEEE International Conference on Neural Networks, Piscataway, NJ, 1995. USA: IEEE, 1995: 1942-1948.
  • 5Kennedy J, Eberhart R C. A discrete binary version of the particle swarm algorithm [C]// Proceedings of the World Multi conference on Systemic, Cybernetics and Informatics 1997, Piscataway, NJ, USA: IEEE, 1997:4104-4109.
  • 6J Sun, B Feng, W Xu. Particle Swarm Optimization with Particles Having Quantum Behavior [C]// IEEE Proe. of Congress on Evolutionary Computation, 2004. Portland OR, USA: IEEE, 2004: 325-331.
  • 7W Fang, J Sun, W Xu. Design IIR Digital Filters Using Quantum- Behaved Particle Swarm Optimization [C]//ICNC, 2006. Xian China: Springer, 2006, (2): 637-64.
  • 8J Sun, W Xu, W Fang. Solving Multi-period Financial Planning Problem Via Quantum-Behaved Particle Swarm Algorithm [C]// ICIC, 2006. Yunnan, China: Springer, 2006:1158-1169.
  • 9J Sun, W Xu, J Liu. Training RBF Neural Network Via Quantum- Behaved Particle Swarm Optimization [C]// ICONIP. Hong Kong China: Springer, 2006, (2): 1156-1163.
  • 10M Xi, J Sun, W Xu. Quantum-Behaved Particle Swarm Optimization for designing H infinity structured specified controllers [C]// DCABES 2006 PROCEEDINGS. Shanghai, Shanghai University Press, 2006, 2: 42-46.

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部