期刊文献+

基于图像识别的武术动作分解方法研究 被引量:1

Research on Wushu movement decomposition method based on image recognition
下载PDF
导出
摘要 提出以图像识别为基础分解识别人体武术动作的方法。首先,通过形态学梯度操作使大部分噪声背景可以消除,进而取得人体轮廓边缘,将视频中每帧图像轮廓边缘提取出来并在同一幅图像中实现累积,利用累积边缘图像计算出以网格为基础的HOG,获取图像动作特征向量;其次,运用改良动态时间规整理论结合动作时间序列下各关节角度变化的特征,即可识别出各类武术动作间关节变化序列的相似性,再设计分类器并向其输入图像中人体动作时变特征数据,从而实现基于图像识别的武术动作分解过程。实验结果表明,利用图像识别可有效分解武术动作。 A method based on image recognition to identify and decompose the human-body Wushu action is proposed. The operation of morphological gradient is used to eliminate most of background noise to obtain the edge of the human-body contour. The contour edge of each frame image is extracted in the image, and accumulated in the same image. The cumulative edge image is used to calculate the HOG based on grid, and acquire the action feature vector of the image. The improved dynamic characteristics of time warping theory is combined with the change characteristic of the angle of each joint under movement time series to recognize the similarity of joint change sequence among various Wushu movements. The classifier was designed, and the time-varying characteristic data of human-body movement in the image is input into it to realize the Wushu movement decomposition based on image recognition. The experimental resuhs show that the image recognition can decompose the Wushu movement effectively.
作者 王俊峰
出处 《现代电子技术》 北大核心 2017年第15期33-36,40,共5页 Modern Electronics Technique
基金 河南省哲学社会科学规划课题:河南省科技厅<城市化进程背景下的河南农村体育发展研究>(2016BTY012)
关键词 人体动作 图像识别 动作时间序列 动作分解 human-body movement image recognition movement time series movement decomposition
  • 相关文献

参考文献10

二级参考文献140

  • 1王向东,张静文,毋立芳,徐文泉.一种运动轨迹引导下的举重视频关键姿态提取方法[J].图学学报,2014,35(2):256-261. 被引量:4
  • 2沈军行,孙守迁,潘云鹤.从运动捕获数据中提取关键帧[J].计算机辅助设计与图形学学报,2004,16(5):719-723. 被引量:44
  • 3韩磊,李君峰,贾云得.基于时空单词的两人交互行为识别方法[J].计算机学报,2010,33(4):1-11.
  • 4Weinland D, Ronfard R, Boyer E.A survey of vision-based methods for action representation, segmentation and recognition[J].Computer Vision and Image Understanding, 2011, 115(2):224-241.
  • 5Shotton J, Girshick R, Fitzgibbon A, et al.Efficient human pose estimation from single depth images[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(12):2821-2840.
  • 6Jhuang H, Gall J, Zuffi S, et al.Towards understanding action recognition[C]//Proceedings of IEEE International Conference on Computer Vision (ICCV).Piscataway, NJ:IEEE Press, 2013:3192-3199.
  • 7Xia L, Chen C C, Aggarwal J K.View invariant human action recognition using histograms of 3d joints[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops(CVPRW).Piscataway, NJ:IEEE Press, 2012:20-27.
  • 8Yang X, Tian Y L.Eigenjoints-based action recognition using na?ve bayes nearest neighbor[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops(CVPRW).Piscataway, NJ:IEEE Press, 2012:14-19.
  • 9Wang J, Liu Z, Wu Y, et al.Mining actionlet ensemble for action recognition with depth cameras[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Piscataway, NJ:IEEE Press, 2012:1290-1297.
  • 10Zanfir M, Leordeanu M, Sminchisescu C.The moving pose:An efficient 3D kinematics descriptor for low-latency action recognition and detection[C]//Proceedings of IEEE International Conference on Computer Vision(ICCV).Piscataway, NJ:IEEE Press, 2013:2752-2759.

共引文献83

同被引文献9

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部