期刊文献+

电力弹簧稳态运行范围及越限失灵机理分析 被引量:16

Analysis on Steady-state Operating Range and Off-limits Malfunction Mechanism of Electrical Spring
下载PDF
导出
摘要 在介绍电力弹簧的研究背景和基本原理的基础上,通过相量图法对电力弹簧稳态调节能力进行详细分析,得到电力弹簧稳态运行范围,同时分析电力弹簧越限失灵的机理,给出了网侧电压越限条件下的关键负载电压设定值优化计算方法。若网侧电压在稳态运行范围内波动,经电力弹簧调节,可使关键负载电压幅值稳定到标准值;若超出稳态运行范围,即发生越限,则受电力弹簧调节能力限制,关键负载电压稳定值会发生偏离,甚至会发生电力弹簧失灵情况。通过优化网侧电压越限情况下的关键负载电压设定值计算方法,考虑关键负载电压允许小范围波动,可以保证电力弹簧在网侧电压越限情况下依旧正常工作,从而扩大电力弹簧稳定运行范围。最后,通过仿真实验对分析结果进行了验证。 With the background and basic principle of the electrical spring(ES)described,the modulability of ES is analyzed at length by the vector diagram method,and the operation range of the line voltage under which ES can work is investigated.Besides,the malfunction mechanism is analyzed,and a new computational method for optimizing the specified value of critical load voltage is found.When the line voltage changes in the range,the critical load voltage can be stabilized on the standard value by ES,but when changes are beyond the range,the ES will break down,and the critical load voltage will deviate from the standard state,or even the system can become unstable.Given the permissible fluctuation range of the critical load voltage,the expanded safety regulation domain of the ES system can be obtained by optimizing the specified value of the critical load voltage.Finally,the analysis results are validated by simulation and experiment results.
出处 《电力系统自动化》 EI CSCD 北大核心 2017年第14期147-152,共6页 Automation of Electric Power Systems
基金 国家重点研发计划资助项目(2016YFB0900504) 国家电网公司科技项目"基于电力弹簧的微电网新型运算模式原理 设计与控制技术研究"~~
关键词 电力弹簧 稳态运行范围 越限失灵 相量分析 electrical spring(ES) steady-state operating range off-limits malfunction phasor analysis
  • 相关文献

参考文献1

二级参考文献20

  • 1曹娜,赵海翔,戴慧珠.常用风电机组并网运行时的无功与电压分析[J].电网技术,2006,30(22):91-94. 被引量:65
  • 2郎永强,张学广,徐殿国,马洪飞,Hadianmrei S.R.双馈电机风电场无功功率分析及控制策略[J].中国电机工程学报,2007,27(9):77-82. 被引量:225
  • 3Cheng M, Zhu Y. The state of the art of wind energy conversion systems and technologies:A review[J]. Energy Conversion and Management, 2014(88): 332-347.
  • 4Hui S Y R, Lee C K, Wu F. Electric springs-A new smal~ grid technology[J]. IEEE Transactions on Smart Grid, 2012, 3(3): 1552-1561.
  • 5Lee S C, Kim S J, Kim S H. Demand side management with air conditioner loads based on the queuing system model[J]. IEEE Transactions on Power Systems, 2010, 26 (2): 661-668.
  • 6Lee C K, Hui S Y R. Reduction of energy storage requirements in future smart grid using electric springs[J]. IEEE Transactions on Smart Grid, 2013, 4(3): 1282-1288.
  • 7Yan S, Tan S C, Lee C K, etal. Electric spring for power quality improvement[C]//IEEE Applied Power Electronics Conference and Exposition. Fort Wort: IEEE IAS and IEEEPELS, 2014: 2140-2147.
  • 8Lee C K, Chaudhuri B, Hui S Y R. Hardware and control implementation of electric springs for stabilizing future smart grid with intermittent renewable energy sources [J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2013, 1(1): 18-27.
  • 9Lee C K, Cheng K L, Ng WM. Load characterisation of electric spring[C]//IEEE Energy Conversion Congress and Exposition. Denver: IEEE Institute of Electrical and Electronics Engineers, 2013: 4665-4670.
  • 10Parag Kanjiya, Vinod Khadkikar. Enhancing power quality and stability of future smart grid with intermittent renewable energy sources using electric springs[C]// International Conference on Renewable Energy Research and Applications. Madrid: International Journal of Renewable Energy Research, 2013: 918-922.

共引文献41

同被引文献112

引证文献16

二级引证文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部