期刊文献+

重组Athrobacter ramosus S34MTSase和MTHase的酶学性质及其制备海藻糖的应用条件优化 被引量:6

Enzymatic properties of recombinant Athrobacter ramosus S34 MTSase and MTHase and optimization of application conditions for production of trehalose
下载PDF
导出
摘要 以淀粉为底物,通过麦芽寡糖基海藻糖合成酶(maltosyltrehalose synthase,MTSase)和麦芽寡糖基海藻糖水解酶(maltosyltrehalose hydrolase,MTHase)的共同作用生产海藻糖是一种经济高效的方法。对Arthrobacter ramosus S34来源并分别在E.coli BL21(DE3)中表达的MTSase和MTHase的酶学性质进行研究,发现MTSase的最适温度为45℃,最适pH为7.0,MTHase的最适温度为55℃,最适pH为6.0。随后用2种酶共同作用生产海藻糖,优化反应条件,考查反应温度、初始pH、底物DE值、加酶量以及底物浓度等因素对酶转化过程中海藻糖产率的影响。最佳酶转化条件为反应温度45℃、初始pH5.5,底物DE值8.5,加酶量分别为MTSase最小加量15.75 U/g淀粉,MTHase最小加量7.5 U/g淀粉。 The production of trehalose from starch is an effective method under the combined action of mahosyl- trehalose synthase (MTSase) and mahosyltrehalose hydrolase (MTHase). The optimum temperature of MTSase was 45℃, the optimal pH was 7.0, and the optimal temperature of MTHase was 55% , the optimum pH was 6.0. Then trehalose was produced by the two enzymes together, and the reaction conditions were optimized. The effects of reac- tion temperature, initial pH, substrate DE value, enzymes amounts and substrate concentration on trehalose yield were investigated. The optimal conditions were as follows : the reaction temperature was 45℃, the initial pH was 8.5, the substrate DE value was 8.5 and the amount of MTSase and MTHase was 15.75 U/g and 7.5 U/g, respectively.
机构地区 江南大学 江南大学
出处 《食品与发酵工业》 CAS CSCD 北大核心 2017年第7期1-6,共6页 Food and Fermentation Industries
基金 国家杰出青年基金(31425020) 江苏高校优秀科技创新团队项目(吴敬)
关键词 海藻糖 麦芽寡糖基海藻糖合成酶(maltosyltrehalose SYNTHASE MTSase) 麦芽寡糖基海藻糖水解酶(mal-tosyltrehalose HYDROLASE MTHase) 酶学性质 酶转化 trehalose maltosyltrehalosesynthase(MTSase) maltosyltrehalose hydrolase(MTHase) enzymatic prop-erties enzyme transformation
  • 相关文献

参考文献2

二级参考文献22

  • 1陈龙然,袁康培,冯明光,王雅芬.一株产环糊精葡萄糖基转移酶的地衣芽孢杆菌的选育、产酶条件及酶学特性[J].微生物学报,2005,45(1):97-101. 被引量:20
  • 2田辉,杨国武,徐颐玲,谢伯泰.环状糊精与环状糊精葡萄糖基转移酶[J].工业微生物,1995,25(2):33-38. 被引量:16
  • 3UITDEHAAG J, van der VEEN A, LUBBERT D, et al. Catalytic mechanism and product specificity of cyclodextrin glycosyltransferase, a prototypical transglycosylase from the or-amylase family[J]. Enzyme and Microbial Technology, 2002, 30(3): 295-304.
  • 4BENDER H. Production characterization and application of cyclodextrin [J]. Advances in Biotechnological Processes, 1986(6): 31-71.
  • 5PRAMILA R, SURESH C, NARASIMHA R D, et al. Digestion of residual β-cyclodextrin in treated egg using glucoamylase from a mutant strain of Aspergillus niger[J]. Food Chemistry, 1999, 65(3): 297- 301.
  • 6LI Zhaofeng, WANG Miao, WANG Feng, et al. Gamma-cyclodextrin: A review on enzymatic production and applications[J]. Appl Microbiol Biotechnol, 2007, 77(2): 245-255.
  • 7van der VEEN B A, UTTDEHAAG J C M, DIJKSTRA B W, et al. The role of arginine 47 in the cyclization and coupling reactions of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 implications for product inhibition and product specificity[J]. Eur J Biochem, 2000, 267 (12): 3432-3441.
  • 8SIN K A, NAKAMURA A, MASAKI H, et al. Replacement of an amino acid residue ofcyclodextrin glucanotransferase of Bacillus ohbensis doubles the production of y-cyclodextrin[J]. J Biotechnol, 1994, 32(3): 283- 288.
  • 9van der VEEN B A, UITDEHAAG J C, PENNINGA D, et al. Rational design of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 to increase α-cyclodextrin production[J]. J Mol Biol, 2000, 296 (4): 1027-1038.
  • 10STROKOPYTOV B, KNEGTEL R M, PENNINGA D, et al. Structure of cyclodextrin glycosyltransferase complexed with a maltononaose inhibitor at 2.6 angstrom resolution. Implications for product specificity [J]. Biochemistry, 1996, 35(13): 4241-4249.

共引文献48

同被引文献50

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部