期刊文献+

车载二氧化硫差分吸收激光雷达系统 被引量:4

Mobile SO_2 Differential Absorption Lidar System
下载PDF
导出
摘要 研制了一套探测低层大气二氧化硫的车载可移动激光雷达系统.该系统选用的差分波长对为300.05nm和301.50nm.光源采用两台Nd…YAG激光器分别泵浦两台窄线宽染料激光器经过倍频来获得.激光经过合束、扩束后与望远镜同轴发射.后向散射信号被近牛顿式望远镜接收后,通过光电倍增管转换为电信号,然后被数据采集卡采集,最后用来反演二氧化硫分布廓线.在淮南地区进行了针对近地面水平探测的外场实验,结果表明,在0.8~3.0km范围内,当晚二氧化硫浓度在20μg·m-3上下波动,气象部门地面仪器结果为18~22μg·m-3,实验结果与仪器结果具有可比性. A mobile lidar system was developed which can be used to measure the lower layer atmospheric SO2. The lasers with wavelength of 300.05 nm and 301.50 nm are adopted in this system. The laser beams, produced by two narrow linewidth dye lasers pumped by two Nd:YAG lasers, are frequency doubled by second harmonic generation crystals. They are merged, expanded and transmitted into the atmosphere coaxially with telescope. The back scattering signals are received by the Newton telescope and converted into electrical signals by photomultiplier. The data are obtained by A/D acquisition card and used to estimate the profile of sulfur dioxide. The horizontal detection were field experimented in Huainan, the results show that the mean concentration of atmospheric SO2 is about 20 μg·m-3 in the range from 0.8 km to 3.0 km. It conforms with the results of ground instrument from meteorological department whose results is about 18-22 μg·m-3.
出处 《光子学报》 EI CAS CSCD 北大核心 2017年第7期29-35,共7页 Acta Photonica Sinica
基金 国家重大科研仪器设备研制专项(No.41127901) 国家自然科学基金(Nos.41575032 41505019)资助~~
关键词 大气光学 差分吸收激光雷达 光学遥感 二氧化硫 吸收截面 Atmospheric optics Differential absorption lidar Optical remote sensing SO2 Absorptioncross section
  • 相关文献

参考文献5

二级参考文献40

  • 1胡顺星,胡欢陵,张寅超,刘小勤,谭琨.差分吸收激光雷达测量环境SO_2[J].中国激光,2004,31(9):1121-1126. 被引量:23
  • 2陈洪芳,丁雪梅,钟志.偏振分光镜分光性能非理想对激光外差干涉非线性误差的影响[J].中国激光,2006,33(11):1562-1566. 被引量:18
  • 3T. Fujii, T. Fukchi, N. Goto et al.. Dual differential absorption lidar for the measurement of atmospheric SO2 of the order of parts in 109[J]. Appl. Opt., 2001, 40(6):949-956.
  • 4Uta-Barbara Goers. Laser remote sensing of sulfur dioxide and ozone with the mobile differential absorption lidar ARGOS [J].Opt. Eng. , 1995, 34(11):3097-3102.
  • 5Shunxing Hu, Huanling Hu, Yinchan Zhang et al.. A new differential absorption lidar for NO2 measurements using Raman-shifted technique [J]. CAin. Opt. Lett., 2003, 1(8):435-437.
  • 6H. J. Kolsch, P. Rairoux, J. P. Wolf et al.. Simultaneous NO and NO2 DIAL measurement using BBO crystals [J].Appl. Opt. , 1989, 28(11):2052-2056.
  • 7R. M. Schotland. Errors in the lidar measurement of atmospheric gases by differential absorption [J]. J. Appl.Meteo. , 1974, 13(1):71-77.
  • 8R. Spurr, W. Thomas. GOME Software Databases for Level 1 to 2 Processing [R]. ER TN-IFE-GO-0018, Iss./Rev. 3/A,"Universitat Bremen-Institut for Fernerkundung, July 2002. 14-14.
  • 9A. C. Vandaele, C. Hermans, P. C. Simon et al..Measurements of the NO2 absorption cross-section from 42000 cm^-1 to 10000 cm^-1(238-1000 nm) at 220 K and 294 K [J].J. Quantum SDectr. Rad. Transfer., 1998, 59(3-5):171-184.
  • 10R. Meller, G. K. Moortgat. Temperature dependence of the absorption cross sections of formaldehyde between 223 and 323 K in the wavelength range 225-375 nm [J]. J.Geophys.Res. , 2000, 105(D6) :7089-7101.

共引文献60

同被引文献33

引证文献4

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部