期刊文献+

石墨烯--锌粉长效防腐涂料的研制 被引量:31

Preparation of long-lasting anticorrosive graphene–zinc powder coating
下载PDF
导出
摘要 在环氧富锌底漆中引入石墨烯以取代部分锌粉,制备了低锌含量(48.0%)的石墨烯-锌粉长效防腐涂料。考察了石墨烯在不同溶剂体系中的分散性,发现当混合溶剂的比例为m(N-甲基吡咯烷酮)∶m(环己酮)∶m(二甲苯)∶m(正丁醇)=50∶16∶16∶8时,石墨烯的分散较好。依据漆膜的耐中性盐雾时间和表面电阻确定了石墨烯的最佳用量为0.5%。通过与国外某品牌环氧富锌底漆进行对比,证明该涂料性能更优:不仅耐盐雾时间可达2 500 h,远长于高锌含量(80.0%)的富锌底漆的600 h,而且可直接涂装面漆,无需过渡中间层,漆膜封闭性优异,更经济环保。讨论了石墨烯在漆膜中的作用机理。 A long-lasting anticorrosive graphene-zinc powder coating with a low content (48.0%) of zinc powder was prepared by introducing graphene into the zinc-rich epoxy primer to replace part of the zinc powder. The dispersion of graphene in different solvent systems was studied, which were found to be good when the solvent is composed of N-methylpyrrolidone, cyclohexanone, xylene and n-butyl alcohol at a mass ratio of 50:16:16:8. According to the anti-neutral-salt-spray time and surface resistance of the cured film, the optimal content of graphene was determined to be 0.5%. As compared with a foreign brand's zinc-rich epoxy primer, this coating has better performance and is more environmentally friendly and of greater economic benefit. Not only its neutral salt spray resistance can reach 2 500 h, which is much longer than that high-zinc- content (80.0%) zinc-rich primer (600 h), but also it can be covered directly by a matching topcoat without any intermediate coating due to its excellent sealing ability. The anticorrosive mechanism of graphene in the cured film was discussed.
出处 《电镀与涂饰》 CAS CSCD 北大核心 2017年第14期725-730,共6页 Electroplating & Finishing
关键词 环氧富锌底漆 石墨烯 锌粉 分散 表面电阻 中性盐雾试验 防腐机理 zinc-rich epoxy primer graphene zinc powder dispersion surface resistance neutral salt spray test anticorrosive mechanism
  • 相关文献

参考文献3

二级参考文献51

  • 1王晓东,侯锐钢,茆凌峰,戴华.玻璃鳞片涂料的应用状况[J].腐蚀科学与防护技术,2001,13(z1):487-489. 被引量:12
  • 2龚剑.几种腐蚀性试验方法的对比研究[J].汽车工艺与材料,2006(12):30-33. 被引量:5
  • 3GEIM A K, NOVOSELOV K S. The rise of graphene [ J ]. Nature Materials, 2007, 6(3) : 183-191.
  • 4MEYER J C, GEIM A K, KATSNELSON M I, et al. The structure of suspended graphene sheets[ J ]. Nature, 2007, 446(7131) : 60-63.
  • 5NOVOSELOV K S, JIANG D, SCHEDIN F, et al. Two- dimensional atomic crystals [ J ]. Proceedings of the National Academy of Sciences of the United States of Amer- ica, 2005, 102(30): 10451-10453.
  • 6NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. E- lectric field effect in atomically thin carbon films [ J]. Sci- ence, 2004, 306(5696): 666-669.
  • 7LEE C, WEI X, KYSAR J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer gra- phene [ J ]. Science, 2008, 321 (5887) : 385-388.
  • 8BALANDIN A A, GHOSH S, BAO W, et al. Superior thermal conductivity of single - layer graphene [ J ]. Nano Letters, 2008, 8(3): 902-907.
  • 9BERGER C, SONG Z, LI X, et al. Electronic confinement and coherence in patterned epitaxial graphene [ J ]. Science, 2006, 312(5777): 1191-1196.
  • 10EMTSEV K V, BOSTWICK A, HORN K, et al. Towards wafer-size graphene layers by atmospheric pressure graphi- tization of silicon carbide [ J ]. Nature Materials, 2009, 8 (3) : 203-207.

共引文献82

同被引文献170

引证文献31

二级引证文献106

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部