期刊文献+

基于教与学优化算法的相关反馈图像检索 被引量:4

Relevance Feedback Image Retrieval Based on Teaching-Learning-Based Optimization Algorithm
下载PDF
导出
摘要 为提高基于内容的图像检索的检索性能和检索速度,克服低层视觉特征与高层语义概念间的"语义鸿沟",提出一种基于教与学优化的图像检索相关反馈算法(TLBO-RF).结合图像检索问题的特殊性和粒子群优化算法的优点,对TLBO算法中个体的更新机制进行了改进,通过将相关图像集的中心作为教师以及引入学员最好学习状态Pbest,使之朝用户感兴趣的相关图像区域快速收敛.将该算法与目前效果最好的两种基于进化算法的相关反馈技术在两套标准图像测试集上进行对比,结果表明本文算法相较于另外两种算法具有明显的优势,不仅提高了图像检索性能,同时也加快了图像检索速度,更好地满足了用户的检索要求. To improve the performance of image retrieval,and accelerate the speed of image retrieval in content-based image retrieval and reduce the"semantic gap"between visual low-level features and high-level semantic,relevance feedback image retrieval based on teaching-learning-based optimization algorithm is proposed( TLBO-RF). Considering the specificity of image retrieval and the advantage of the PSO,the update strategy of individual is modified in TLBO,the center of the relevant images is regarded as the teacher and the personal best is introduced,which makes the algorithm converge fast to the region of relevant images that the user is interested in. TLBO-RF is compared to two state-of-the-art RFs based on evolutionary algorithm on two benchmark images. The results showthat TLBO-RF has obvious advantage in comparison with other two algorithms,not only increases the performance of image retrieval,but also improves the image retrieval speed,and can better meet the user needs of image retrieval.
出处 《电子学报》 EI CAS CSCD 北大核心 2017年第7期1668-1676,共9页 Acta Electronica Sinica
基金 国家自然科学基金(No.61175126) 国家国际科技合作专项(No.2015DFG12150)
关键词 基于内容的图像检索 相关反馈 教与学优化算法 粒子群优化算法 content-based image retrieval relevance feedback TLBO PSO
  • 相关文献

参考文献4

二级参考文献131

  • 1张利彪,周春光,马铭,刘小华.基于粒子群算法求解多目标优化问题[J].计算机研究与发展,2004,41(7):1286-1291. 被引量:225
  • 2吴洪,卢汉清,马颂德.基于内容图像检索中相关反馈技术的回顾[J].计算机学报,2005,28(12):1969-1979. 被引量:52
  • 3李清勇,胡宏,施智平,史忠植.基于纹理语义特征的图像检索研究[J].计算机学报,2006,29(1):116-123. 被引量:25
  • 4Rui Y,Huang T S,Mehrotra S.Content-based image retrieval with relevance feedback in MARS .Proceedings of IEEE International Conference on Image Processing .Santa Barbara,CA,USA:IEEE Computer Society,1997.815-818.
  • 5van Rijsbergen C J.Information Retrieval[M].London:Butterworths,1979.
  • 6Picard R W,Minka T P,Szummer M.Modeling user subjectivity in image libraries .Proceedings of IEEE International Conference on Image Processing .Lausanne,Switzerland:IEEE,1996.777-780.
  • 7Vasconcelos N,Lippman A.Learning from user feedback in image retrieval systems .Proceedings of the Neural Information Processing Systems .Breckenridge,CO:MIT Press,1999.
  • 8Su Z,Zhang H,Ma S.Relevant feedback using a Bayesian classifier in content-based image retrieval .Proceedings of the SPIE Storage and Retrieval for Media Databases .San Jose:SPIE Press,2001.97-106.
  • 9Wu J,Fu Y,Lu M.Bayesian active learning in retrieval feedback for image retrieval .Proceedings of 2nd international symposium on intelligent information technology application .Shanghai,China:Inst.of Elec,2008.371-375.
  • 10Deselaers T,Paredes R,Vidal E,Hermann N.Learning weighted distances for relevance feedback in image retrieval .Proceedings of 19th International Conference on Pattern Recognition .Tampa,FL,United stats,2008.1-4.

共引文献102

同被引文献24

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部