期刊文献+

与主观感知相一致的颜色校正评估数据集建立 被引量:6

Image Color Correction Database for Subjective Perceptual Consistency Assessment
下载PDF
导出
摘要 为了获得与用户主观感知相一致的颜色校正算法和对校正结果进行客观评估,本文首先创建了一个针对颜色校正的数据集ICCD(Image Color Correction Database).ICCD数据集中的颜色差异涵盖了多种类型和粒度,其中颜色差异类型包括亮度、色相、饱和度、曝光度、对比度以及RGB中的R和G通道,每类颜色差异包括3个修改粒度.本文挑选了6种具有代表性的颜色校正算法对目标图像进行校正,并通过用户调查获得校正结果图像的主观平均得分值.基于ICCD数据集,本文对6种颜色校正算法的性能进行评估,得出在大多数颜色差异和粒度上,Pitie提出的迭代颜色分布转换算法的校正性能最好,同时具有较好的稳定性.最后,本文对14种图像质量评估方法进行评估,挑选出与已有的评估方法相比与主观感知一致性更好的评估方法. To achieve objective image correction quality assessment results that are consistent with subjective perception,we create an Image Color Correction Database( ICCD). ICCD contains a variety of types and scales of color difference.The types of color difference include the differences in brightness,hue,saturation,exposure,contrast and R and G channels.Each type has three different scales. We select six state-of-the-art color correction algorithms to perform color correction for each target image. Then we design and conduct user study to get users' Mean Opinion Score( MOS). Based on ICCD,we evaluate the performance of six color correction algorithms. For most of the types and scales of color difference,Pitie's iterative color distribution transfer algorithm performs best. We also evaluate the 14 objective image quality assessment metrics and pick out three better assessment metrics that achieve better consistency with MOS than the existing methods.
出处 《电子学报》 EI CAS CSCD 北大核心 2017年第7期1677-1685,共9页 Acta Electronica Sinica
基金 国家自然科学基金(No.61300102) 福建省自然科学基金(No.2014J01233) 福建省自然科学基金杰出青年科学基金(No.2015J06014)
关键词 颜色校正 主观平均得分 迭代颜色分布转换 颜色一致性 全参考图像质量评估 color correction mean opinion score iterative color distribution transfer color consistency image quality assessment
  • 相关文献

参考文献6

二级参考文献71

  • 1刘元朋,张定华,桂元坤,李永奇.用带约束的最小二乘法拟合平面圆曲线[J].计算机辅助设计与图形学学报,2004,16(10):1382-1385. 被引量:44
  • 2胡良梅,高隽,何柯峰.图像融合质量评价方法的研究[J].电子学报,2004,32(F12):218-221. 被引量:100
  • 3徐艳芳,刘文耀.数字影像输出设备色域边界的插值计算方法[J].光学精密工程,2006,14(2):261-265. 被引量:10
  • 4B Girod. What's wrong with mean-square error[ A]. Digital Images and Human Vision [ C]. Cambridge, MIT Press, MA, 1993.207 - 220.
  • 5Saklison D. On the role of the observer and a distortion measure image transmission[J]. IEEE Transactions on Communication, 1977,25(11) : 1251 - 1267.
  • 6A B Watson. Digital Images and Human Vision[ M ]. Cambridge,Massachusetts: The MIT Press, 1993.179 - 206.
  • 7J Lubin. Vision Models for Target Detection and Recognition [ M]. Singapore: World Scientific Publishing, 1995.245 - 283.
  • 8Sarnoff Corporation, JNDmetrix Technology[ OL ]. Evaluation Version available: http://www. samoff.com/products-services/video- vision/jndmetrix/downloads. asp, 2003.
  • 9VQEG.Final report from the video quality experts group on the validation of objective models of video quality assessment[EB/ OL]. ( 2000203205 ). http://www. vqeg. org.
  • 10Zhou Wang,Conrad Bovik. Image quality assessment:from error visibility to structural similarity [ J ]. IEEE Transactions on Image Processing, 2004,13(4) : 600 - 612.

共引文献105

同被引文献31

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部