期刊文献+

基于改进均值标准差曲线描述子的反射对称轴检测 被引量:1

Reflection Symmetry Axis Detection Based on Improved Mean-Standard Deviation Curve Descriptor
下载PDF
导出
摘要 针对反射对称轴难以检测的问题,该文提出一种基于改进均值标准差曲线描述子(Mean-Standard deviation Curve Descriptor,MSCD)的反射对称轴检测算法.该算法首先对MSCD曲线描述子进行改进,使其具有镜像反射不变性并实现对称曲线对检测;然后采用距离约束并使用Hough变换获取图像的局部对称轴;最后通过局部对称轴合并得到最终对称轴.实验结果表明,该算法可实现图像的单对称轴和多对称轴检测,在亮度变化、对比度变化、噪声污染、模糊以及形变情况下,均能够准确定位图像对称轴并具有较强鲁棒性. Due to the difficulty in detecting reflection symmetry axis,a detection algorithm based on improved meanstandard deviation curve descriptor( MSCD) is proposed. Firstly,the proposed algorithm improves the MSCD so that its mirror reflection invariance can guarantee the accurate detection of the symmetrical curve pairs. Then the distance constraint and Hough transform are used to gain local symmetry axis of the image. Finally,final symmetry axis can be acquired by merging the local ones. Experimental results showthat the proposed algorithm can realize the symmetric axis detection for image with both single symmetric axis and multi ones. Besides,it can locate the image symmetry axis precisely and robustly under brightness changes,contrast changes,noise pollution,fuzzy and deformations.
出处 《电子学报》 EI CAS CSCD 北大核心 2017年第7期1701-1706,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.61272394 No.61472119 No.61572173 No.61472373 No.61401150) 河南理工大学创新型科研团队项目(No.T014-3) 河南理工大学杰出青年基金(No.J2016-3) 河南省高校基本科研业务费(No.NSFRF1604)
关键词 均值标准差曲线描述子 曲线匹配 反射对称轴检测 mean-standard deviation curve descriptor curve matching reflection symmetry
  • 相关文献

参考文献5

二级参考文献55

  • 1司永胜,刘刚,高瑞.基于K-均值聚类的绿色苹果识别技术[J].农业机械学报,2009,40(S1):100-104. 被引量:50
  • 2宋健,张铁中,徐丽明,汤修映.果蔬采摘机器人研究进展与展望[J].农业机械学报,2006,37(5):158-162. 被引量:216
  • 3Tang A W K, Ng T P, Hung Y S, et al. Projective Reconstruction from Line-Correspondences in Multiple Uncalibrated Images. Pattern Recognition, 2006, 39 (5) : 889 - 896
  • 4Aider O A, Hoppenot P, Colle E. A Model-Based Method for Indoor Mobile Robot Localization Using Monocular Vision and Straight-Line Correspondences. Robotics and Autonomous Systems, 2005, 52(2/3 ) : 229 - 246
  • 5Shi Fanhuai, Wang Jianhua, Zhang Jing, et al. Motion Segmentation of Multiple Translation Objects from Line Correspondences. Pat- tern Recognition, 2005, 38(10) : 1775 -1778
  • 6Bartoli A, Sturm P. Multiple-View Structure and Motion from Line Correspondences // Proc of the IEEE International Conference on Computer Vision. Madison, USA, 2003 : 207 -212
  • 7Belongie S, Malik J, Puzicha J. Shape Matching and Object Recognition Using Shape Contexts. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002, 24(4) : 509 -522
  • 8Lowe D G. Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision, 2004, 60 ( 2 ) : 91 -110
  • 9Ke Yan, Sukthankar R. PCA-SIFF: A More Distinctive Representation for Local Image Descriptors// Proc of the IEEE International Conference on Computer Vision and Pattern Recognition. Washington, USA, 2004, II : 506 -513
  • 10Mikolajczyk K, Schmid C. A Performance Evaluation of Local Descriptors. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27 (10) : 1615 - 1630

共引文献95

同被引文献5

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部